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SEPARATION AND PURIFICATION METHODS, 14(2), 213-304 (1985) 

MICELLES I N  SEPARATIONS: 
A PRACTICAL AND THEORETICAL REVIEW 

Danie l  W. Armstrong 
Department o f  Chemist ry  
Texas Tech U n i v e r s i t y  

Lubbock, Texas 79409-4260 

I. INTRODUCTION 

Sur face  a c t i v e  agents (a.k.a. s u r f a c t a n t s ,  amphiphi les,  

de te rgen ts ,  e t c . )  have been u t i l i z e d  f o r  years i n  a v a r i e t y  o f  

s e p a r a t i o n  processes ( T a b l e  I ) .  Most o f  t h e  e a r l  i e r  techniques 

can be c l a s s i f i e d  as n o r m i c e l l a r  methods. That  i s ,  t h e  s e p a r a t i o n  

process d i d  n o t  r e q u i r e  the s u r f a c t a n t  t o  b e  i n  an aggregated o r  

m i c e l l a r  form. These methods have been expanded and improved and 

remain w i d e l y  u s e f u l  today. The focus o f  t h i s  work, however, i s  

on  the more r e c e n t  m i c e l l a r  techniques (Tab le  I ) .  Readers 

i n t e r e s t e d  i n  t h e  n o r m i c e l l a r  methods a r e  r e f e r r e d  t o  the  many 

1-6 f i n e  rev iews and a r t i c l e s  t h a t  have appeared on these s u b j e c t s .  

I n  making a d i v i s i o n  between m i c e l l a r  and n o m i c e l l a r  s e p a r a t i o n  

techniques,  one should understand t h a t  t h e r e  a re  some cases where 

t h i s  d i s t i n c t i o n  i s  n o t  c l e a r - c u t .  

The d e l i b e r a t e  use o f  m i c e l l e s  and t h e i r  unique p r o p e r t i e s  

f o r  separa t i ons  p robab ly  began i n  the  mid t o  l a t e  1 9 7 0 ' ~ . ' - ~  Also 

a t  t h i s  t i m e  m i c e l l e s  were be ing  used t o  improve a v a r i e t y  o f  
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ARMSTRONG 214 

TABLE I. 
~~ ~ 

Examples o f  Separa t i on  Techniques 
Which U t i l i z e  S u r f a c t a n t s  

~~~~~~~ ~ 

n i c e l l a r  Techniques 

a. pseudophase o r  m i c e l l a r  
1 i q u i d  chromatography 

Nonm i ce1  1 a r  Techniques 

a. i o n  i n t e r a c t i o n  
chroma t o g  r ap h y 

b. l i q u i d - l i q u i d  e x t r a c t i o n s  b. foam f l o t a t i o n  

c. c l o u d  p o i n t  e x t r a c t i o n s  c. f l o c  foam f l o a t i o n  

d. c a p i l l a r y  e l e c t r o k i n e t i c  
separa t i ons  

d .  p o l y a c r y l m i d e  g e l  
e l e c t r o p h o r e s i s  

e. membrane techniques e. p r e c i p i t a t i o n  and 
f l  occul  a t i o n  ----- 

o t h e r  s pec t r o  sc op i  c l1 -' ' e l  ec t r o c  hem i c  a1 

techniques." The e x i s t e n c e  o f  t h e  m i c e l l a r  pseudophase was a 

fundamental requ i remen t  f o r  a l l  o f  these techniques.  I n  some 

instances,  i t  i s  p o s s i b l e  f o r  m i c e l l e s  t o  b e  p r e s e n t  b u t  n o t  

c o n t r i b u t e  t o  a s e p a r a t i o n  process o r  t h a t  t h e  d e s i r e d  e f f e c t  i s  

caused b y  monomer s u r f a c t a n t .  These should n o t  b e  confused w i t h  

t r u e  m i c e l l a r  methods (Table I ) .  

t i  tr ime tr i c  , and 

An ove rv iew  o f  t h e  s t r u c t u r e  and p r o p e r t i e s  o f  m i c e l l e s  w i l l  

be g i v e n  p r i o r  t o  the  d i s c u s s i o n s  o f  v a r i o u s  m i c e l l a r  s e p a r a t i o n  

techniques.  4 t ho rough  knowledge o f  m i c e l l e s  i s  u s e f u l  f o r  those 

who want t o  understand, u t i l i z e  and o p t i m i z e  these methods. It i s  

hoped t h a t  t h i s  r e v i e w  w i l l  h e l p  s t i m u l a t e  f u r t h e r  work and 

i n n o v a t i o n  i n  t h e  a rea  o f  m i c e l l a r  separa t i ons .  
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MICELLES IN SEPARATIONS 215 

11. STRUCTURE AND PROPERTIES OF MICELLES 

A .  Normal M i c e l l e s  

S t r u c t u r e .  M i c e l l e s  a r e  dynanic  species c o n s i s t i n g  o f  

aggregated s u r f a c t a n t s  i n  an aqueous con t inuun .  19-27 S u r f a c t a n t s  

a r e  a m p h i p h i l  i c  m o l e c u l e s  t h a t  c o n t a i n  b o t h  h y d r o p h i 1  i c  

( w a t e r - l o v i n g )  and hydrophobic ( w a t e r - h a t i n g )  p a r t s .  2 8 y 2 9  They 

a r e  g e n e r a l l y  c l a s s i f i e d  by  t h e  n a t u r e  o f  t h e i r  h y d r o p h i l i c  

"head-groups" as c a t i o n i c ,  a n i o n i c ,  n o n i o n i c  o r  z w i t t e r i o n i c  

s u r f a c t a n t s .  The hydrophobic " t a i l "  o f  t h e  s u r f a c t a n t  i s  

g e n e r a l l y  a 1 i n e a r  o r  branched hydrocarbon c o n t a i n i n g  between 

seven and twenty one carbons. Occas iona l l y  a romat i c  r i n g  systems 

w i l l  be p resen t  as  w e l l .  S u r f a c t a n t s  u s u a l l y  e x i s t  a s  d i s c r e t e  

monomers i n  v e r y  d i l u t e  aqueous s o l u t i o n  ( g e n e r a l l y  l e s s  t h a n  

M ) ,  a l t h o u g h  t h e r e  i s  some ev idence o f  p r e m i c e l l a r  agg rega t ion  o r  

01 i g a n e r i z a t i o n .  27 I f  one inc reases  t h e  c o n c e n t r a t i o n  o f  

s u r f a c t a n t  i n  s o l u t i o n ,  a p o i n t  w i l l  e v e n t u a l l y  b e  reached where 

e x t e n s i v e  aggrega t ion  occu rs  and many o f  t h e  b u l k  p h y s i c a l  

s o l u t i o n  p r o p e r t i e s  change. The aggregate i s  c a l l e d  a m i c e l l e  and 

i t s  shape v a r i e s  from t h a t  o f  a p r o l a t e  e l l i p s o i d  t o  a rough 

sphere depending on t h e  s u r f a c t a n t  and e n v i r o m e n t .  The p o i n t  a t  

wh ich  a g g r e g a t i o n  occu rs  i s  r e f e r r e d  t o  as t h e  c r i t i c a l  m i c e l l e  

c o n c e n t r a t i o n  ( i . e . a  CMC, c.m.c., o r  Cm) and can b e  d e t e c t e d  by a 

v a r i e t y  o f  physico-chemical t echn iques  a s  i l l u s t r a t e d  i n  F i g u r e  1. 

Aggregat ion a c t u a l l y  occu rs  ove r  a narrow range  o f  c o n c e n t r a t i o n s  

and seems t o  be a h i g h l y  c o o p e r a t i v e  process.25 It i s  n o t  unusual 

t o  o b t a i n  s l i g h t l y  d i f f e r e n t  CMC v a l u e s  depending on o n e ' s  method 

o f  measurement. 
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[Surfactant] 

F i g u r e  1 

T y p i c a l  changes i n  an aqueous s u r f a c t a n t  system's p r o p e r t i e s  which 
r e f l e c t  t h e  onse t  o f  aggregat ion.  

The s t r u c t u r e  o f  aqueous m i c e l l e s  c o n t i n u e s  t o  b e  a s u b j e c t  

o f  some con t rove rsy .  A v a r i e t y  o f  models have been proposed, 

based on a v a r i e t y  o f  sometimes c o n f l i c t i n g  exper imenta l  evidence. 

Four b a s i c  models w i l l  be considered,  i n  r o u g h l y  t h e  c h r o n o l o g i c a l  

o rde r  o f  t h e i r  appearance i n  the l i t e r a t u r e .  It should be noted 
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MICELLES IN SEPARATIONS 2 1 7  

t h a t  i n  a b r i e f  t r e a t m e n t  such as  t h i s ,  some o v e r s i m p l i f i c a t i o n  i n  

t h e  i n t e r e s t  o f  space and c l a r i t y  i s  unavoidable.  

A c r o s s - s e c t i o n a l  r e p r e s e n t a t i o n  o f  t h e  c l a s s i c a l  m i c e l l e  i s  

g i v e n  i n  F i g u r e  2. T h i s  i s  o f t e n  r e f e r r e d  t o  as t h e  H a r t l e y ,  

o i l  -drop, r e e f  and /o r  r a d i a l  model. 27,30-32 T h i s  model assunes 

t h e  m i c e l l e  has approx ima te l y  s p h e r i c a l  geometry, a somewhat rough  

s u r f a c e  w i t h  a l l  h y d r o c a r b o n  c h a i n s  i n  e x t e n d e d  a@ 
c o n f i g u r a t i o n s ,  and l i t t l e  o r  no water p e n e t r a t i o n  i n t o  the co re .  

Indeed, i t  resembles a small  hydrocarbon " p o o l "  o r  o i l  d r o p l e t  

surrounded by  p o l  a r  headgroups, coun te r  i o n s  and water .  27,30-32 

Hydrophobic 
Core 

Stern Layer T h i c k n e s s 1  

F i g u r e  2 

T y p i c a l  c r o s s - s e c t i o n a l  schematic r e p r e s e n t i n g  th33c,\a;sJcal v iew  
o f  an aqueous m i c e l l e .  Counter ions a r e  n o t  shown. 
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218 ARMSTRONG 

There a r e  a number o f  c o n t r a d i c t i o n s  i n  t h i s  model which have 

induced o the r  researchers  t o  propose a1 t e r n a t i v e s .  For  example, 

how can r a d i a l l y  a l i g n e d ,  extended, anti hydrocarbons b e  l i k e  a 

d i s o r d e r e d  o i l  d r o p l e t ,  o r  how can the ends o f  t h e  hydrocarbon 

cha ins  occupy t h e  same volume a t  t h e  c e n t e r  o f  t h e  m i c e l l e  core? 

Ye t ,  f o r  years t h i s  simple, e s t h e t i c a l l y  p l e a s i n g ,  b u t  u n c r i t i c a l  

v i e w  o f  t h e  m i c e l l e  has been used t o  adequate ly  e x p l a i n  a number 

o f  exper imenta l  obse rva t i ons  which r e q u i r e  a hydrophobic  

pse ud opha se . I n c r e a s i n g  1 y , t heore t i c  a1 and ex per imen t a l  ev i d  enc e 

i n d i c a t e  a number o f  shor tcomings w i t h  t h e  c l a s s i c a l  model. 

o f  probe molecules,  d i r e c t  a n a l y s i s ,  and model b u i l d i n g  

i n d i c a t e  t h a t  t h e r e  i s  s i g n i f i c a n t  c o n t a c t  between water and 

hydrocarbon " t a i l s "  o f  t h e  s u r f a c t a n t s  which c o n s t i t u t e  

m i c e l l e  ( a s  w e l l  as w i t h  hydrophobic s o l u t e s  assoc ia ted  w i t h  

m i ~ e l l e ) . * ~  T h i s  can occur  i n  a t  l e a s t  t h r e e  d i f f e r e n t  ways: 

i f  t h e r e  i s  s i g n i f i c a n t  water p e n e t r a t i o n  pas t  t h e  head groups 

Use 

a1 1 

t h e  

t h e  

t h e  

( a )  

and 

i n t o  the  hydrophobic c o r e  o f  t h e  m i c e l l e ,  (b )  i f  t h e r e  i s  no 

p e n e t r a t i o n  o f  water i n t o  the m i c e l l e  c o r e  b u t  s i g n i f i c a n t  

p o r t i o n s  o f  t h e  h y d r o c a r b o n  " t a i l s "  a r e  exposed a t  t h e  

m i c e l l e - w a t e r  i n t e r f a c e ,  ( c )  some c a n b i n a t i o n  o f  ( a )  and (b ) .  A 

c r o s s - s e c t i o n a l  r e p r e s e n t a t i o n  o f  t h e  "Menger-micel le" i s  shown i n  

F i g u r e  3. 33 There a re  two con fo rma t iona l  extremes f o r  t h e  

Menger-model, one i n  which t h e  hydrocarbon c h a i n s  a r e  f l i l l y  

extended and t h e  o t h e r  where the  hydrocarbon c h a i n s  a r e  f o l d e d  o r  

cmpac  t e d  . 33-37 I n  b o t h  cases water has access t o  t h e  hydrocarbon 

i n t e r i o r  o f  t h e  m i c e l l e .  The s u r f a c e  o f  t h e  "Menger m i c e l l e "  i s  
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MICELLES IN SEPARATIONS 219 

rougher  and more p o o r l y  d e f i n e d  than t h a t  o f  t h e  c l a s s i c a l  m i c e l l e  

and the s u r f a c t a n t s  t h a t  comprise the  m i c e l l e  a r e  o r i e n t e d  i n  a 

more r a n d m  manner ( F i g u r e  3 ) .  I n  a d d i t i o n  t o  be ing  more 

s t e r i c a l l y  a c c e p t a b l e ,  t h i s  model  e x p l a i n s  a number o f  

exper imenta l  r e s u l t s  (e.g., v i s c o s i t y ,  p o l a r i t y ,  k i n e t i c s )  b e t t e r  

t han  the  c l a s s i c a l  model. 33-37 

Two o f  t h e  more r e c e n t  m i c e l l e  models have a hydrophobic c o r e  

l a r g e l y  devoid o f  water ( a s  i n  the c l a s s i c a l  model) and y e t  have 

c o n s i d e r a b l e  c o n t a c t  between water and t h e  hydrophobic " t a i l "  

p o r t i o n  o f  t h e  s u r f a c t a n t s  ( a s  i n  t h e  Menger-model). T h i s  i s  

F i g u r e  3 

A p o s s i b l e  r e p r e s e n t a t i o n  o f  t h e  Menger m i c e l l e  i n  which t h e  
hydrocarbon " t a i l s "  a r e  extended. I n  t h i s  model t h e  s i z e  o f  t h e  
c o r e  can vary,  t h e  s u r f a c e  i s  r e l a t i v f i l a g o u g h  and water  i s  a b l e  
t o  pene t ra te  p a s t  t h e  S t e r n  l a y e r .  Coun te r ions  a r e  n o t  
shown. 
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220 ARMSTRONG 

accomplished by  hav ing  hydrocarbon p o r t i o n s  o f  t h e  s u r f a c t a n t  as  

w e l l  as "head-groups" exposed a t  t h e  sur face.  Fromherz developed 

a spher i ca l  s t r u c t u r e  f o r  t he  m i c e l l e  us ing  space f i l l i n g  b l o c k  

models.38 The s u r f a c t a n t  b l o c k s  a r e  assembled i n  a p a r a l l e l ,  

s t r a i n f r e e ,  w a t e r - f r e e  packing w i t h  t h e  head groups separated as 

f a r  as poss ib le .  W h i l e  the  hydrocarbon t a i l s  a r e  considered t o  b e  

i n  an ex tended-an t i  conformat ion,  gauche con fo rma t ions  near t h e  

head group o f  t h e  s u r f a c t a n t  a r e  a l lowed t o  m in im ize  e l e c t r o s t a t i c  

r e p u l s i o n .  38 The r e s u l t ,  shown i n  F i g u r e  4, i s  a h i g h l y  

s t r u c t u r e d  h y b r i d  o f  a b i l a y e r  and c l a s s i c a l  m i c e l l e .  As can be 

F i g u r e  4 

A p o s s i b l e  c r o s s - s e c t i o n a l  v iew o f  t h e  Fromherz m i c e l l e .  T h i s  
model i s  c o n s t r u c t e d  us ing  c y l i n d r i c a l  s t i c k s  t o  r e p r e s e n t  t h e  
s u r f a c t a n t  molecules.  The "molecules" a r e  arranged i n  a square 
l a t t i c e .  The models can be b e n t  by  one gauche con fo rma t ion  near  
t h e  headgroup. These and a d d i t i o n a l  c o n s t r a i n t s  r e s u l t  i n  a model 
w i t h  a more t r a d i t i o n a l  hydrophobic  core, however, t h e  avera 
amount o f  hydrocarbon s u b j e c t  t o  s u r f a c e  w e t t i n g  i s  h igh.  
Counter ions a r e  n o t  shown. 

9fi 
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MICELLES IN SEPARATIONS 221 

seen i n  F i g u r e  4 ,  t h e r e  i s  c o n s i d e r a b l e  hydrocarbon exposure t o  

water  a t  t he  m i c e l l e  sur face.  More e x t e n s i v e  d e t a i l s  o f  t h i s  

model have been pub1 i ~ h e d . ~ ~  

I n  the  D i l l  model o f  t h e  m i c e l l e ,  t h e  hydrocarbon " t a i l s "  a r e  

c o n s i d e r a b l y  l e s s  s t r u c t u r e d  ( F i g u r e  5 ) .  39-41 S t a t i s t i c a l  t h e o r y  

i n  c o n j u n c t i o n  w i t h  a l a t t i c e  model a l l ows  a randan d i s t r i b u t i o n  

o f  c h a i n s  on which c e r t a i n  s t e r i c  c o n s t r a i n t s  a r e  imposed. Thus, 

t h e  s t r u c t u r e  o f  t h e  r o u g h l y  s p h e r i c a l  m i c e l l e  i s  t hough t  t o  b e  

t h e  r e s u l t  o f :  ( a )  Langmuir 's  p r i n c i p l e  o f  d i f f e r e n t i a l  

s o l u b i l i t y  i n  which hydrocarbon t a i l s  a r e  packed i n t o  a w a t e r l e s s  

F i g u r e  5 

A c r o s s - s e c t i o n a l  schematic o f  t h e  D i l l  model f o r  t h e  m i c e l l e .  The 
hydrocarbon t a i l s  a r e  more randomly d i s t r i b u t e d  as d i c t a t e d  b y  
s t a t i s t i c a l  c o n s i d e r a t i o n s .  There i s  a d e f i n i t i v e  hydrophobic  
co re  w i t h  l i t t l e  water  p e n e t r a t i o n .  There i s  a l s o  an a p p r e c i a b l e  
amount f ydrocarbon exposed a t  t h e  sur face.  Coun te r ions  a r e  n o t  shown. 38-4) 
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222 ARMSTRONG 

c o r e  ( b )  s t e r i c  forces which de te rm ine  t h e  s t r u c t u r e  o f  t h e  c o r e ,  

and ( c )  mo lecu la r  c h a i n  c o n f i g u r a t i o n s  o f  equal energy a r e  o f  

equal 1 i k e l  i hood. 39-41 Again, t h e r e  i s  a c o n s i d e r a b l e  amount o f  

hydrocarbon exposed a t  t he  su r face  o f  t h e  m i c e l l e .  Th i s ,  a s  i n  

the p rev ious  model, a l l o w s  hydrophobic  s o l u t e s  t o  b e  s o l u b i l  i zed  

near t h e  sur face,  and e x p l a i n s  how these  s o l u t e s  ( a s  w e l l  as  

p o r t i o n s  o f  t h e  s u r f a c t a n t  hydrocarbon " t a i l " )  can b e  i n  c o n t a c t  

w i t h  water when assoc ia ted  w i t h  t h e  m i c e l l e  ( F i g u r e  5 ) .  

One must understand t h a t  models b y  t h e i r  v e r y  n a t u r e  a r e  

o v e r s i m p l i f i c a t i o n s  o f  t h e  r e a l  s i t u a t i o n .  The debate on m i c e l l e  

s t r u c t u r e  w i l l  undoubtedly  con t inue .  Much o f  t h e  c u r r e n t  

c o n t r o v e r s y  over  m i c e l l e  s t r u c t u r e  stems from Menger's summary o f  

c o n f l i c t i n g  exper imenta l  r e s u l t s  and h i s  a1 t e r n a t i v e  mice1 l e  

s t r u c t u r e  ( v i d e  s u p r a )  w h i c h  a t t e m p t e d  t o  r e s o l v e  t h e s e  

c o n f l  i c t s .  33 Regard less o f  which v i e w  o f  t h e  m i c e l l e  i s  

e v e n t u a l l y  accepted, Menger must b e  g i v e n  c r e d i t  f o r  p o i n t i n g  o u t  

t h e  sho r t can ings  o f  t h e  c l a s s i c a l  m i c e l l e ,  wh ich  r e s u l t e d  i n  a 

cons ide rab le  amount o f  d i s c u s s i o n  and model ing b y  o t h e r s .  

P r o p e r t i e s .  The p r o p e r t i e s  o f  aqueous m i c e l l e s  have been 

ex tens i ve1  y reviewed by  a number o f  researchers .  19-*' A summary 

o f  t h i s  m a t e r i a l  w i l l  be g i v e n  w i t h  p a r t i c u l a r  emphasis on those 

c h a r a c t e r i s t i c s  t h a t  a r e  most p e r t i n e n t  t o  separa t i ons .  

Several se lec ted  m i c e l l e  forming s u r f a c t a n t s  a r e  l i s t e d  i n  

Table I1 i n c l u d i n g  t h e i r  C M C ' s ,  K r a f f t  p o i n t s ,  a g g r e g a t i o n  numbers 

and f r a c t i o n  o f  charges. As w i l l  b e  seen, a l l  o f  these p r o p e r t i e s  

a r e  i m p o r t a n t  i n  m i c e l l a r  separa t i ons .  The aggrega t ion  number i s  
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MICELLES IN SEPARATIONS 223 

t he  average number o f  monomer s u r f a c t a n t  mo lecu les  per m i c e l l e .  

The K r a f f t  p o i n t  i s  t h e  temperature a t  which t h e  s o l u b i l i t y  o f  a 

s u r f a c t a n t  i s  equal t o  i t s  CMC. The f r a c t i o n  o f  charge f o r  

m i c e l l e s  composed o f  i o n i c  s u r f a c t a n t s  i s  t h e  r a t i o  o f  t h e  number 

o f  c o u n t e r i o n s  i n  t h e  S t e r n  Layer o f  t h e  m i c e l l e  t o  t h e  

aggrega t ion  number sub t rac ted  from 1. Most o f  t hese  p r o p e r t i e s  

a r e  dependent on  t h e  temperature o f  t h e  system and a r e  a l s o  

s t r o n g l y  a f f e c t e d  b y  t h e  presence o f  o r g a n i c  and /o r  i n o r g a n i c  

i m p u r i t i e s .  For  example, s l  i g h t l  y i n c r e a s i n g  the  i o n i c  s t r e n g t h  

o f  t h e  s o l u t i o n  w i l l  decrease t h e  CMC and inc rease  t h e  aggrega t ion  

number o f  most i o n i c  m i ~ e l l e s . ~ ~ ~ ~ *  Some o rgan ic  i m p u r i t i e s  seem 

t o  induce m i c e l l e  f o r m a t i o n  a t  l ower  s u r f a c t a n t  c o n c e n t r a t i o n s  

w h i l e  o t h e r s ,  such as  methanol o r  e thano l ,  t end  t o  d i s r u p t  m i c e l l e  

formation.21 F i g u r e  6 i s  a phase diagram f o r  t y p i c a l  pu re  i o n i c  

s u r f a c t a n t s .  It i l l u s t r a t e s  t h e  r e g i o n s  i n  which p r e c i p i t a t e ,  

monomers and m i c e l l e s  e x i s t  as  a f u n c t i o n  o f  t empera tu re  and 

c o n c e n t r a t i o n .  A t  s t i l l  h ighe r  s u r f a c t a n t  c o n c e n t r a t i o n s ,  i t  i s  

p o s s i b l e  f o r  some s u r f a c t a n t s  t o  undergo sphere t o  r o d  t r a n s i t i o n s  

and f o r m a t i o n  o f  1 y o t r o p i c  1 i q u i d  c r y s t a l s .  19,20,37 

I t  i s  i m p o r t a n t  t o  understand t h a t  t h e r e  a r e  some d i s t i n c t  

d i f f e r e n c e s  between i o n i c  and non ion ic  m i c e l l e s .  I n  genera l  , 

m i c e l l e s  composed o f  n o n i o n i c  s u r f a c t a n t  tend t o  have lower  CMC's 

and h ighe r  agg rega t ion  numbers than  analogous i o n i c  m i c e l l e s .  19,20 

T h i s  i s  t hough t  t o  b e  due, i n  p a r t ,  t o  t h e  l a c k  o f  e l e c t r o s t a t i c  

r e p u l s i o n  between t h e  "head groups" o f  n o n i o n i c  s u r f a c t a n t s .  I n  

i o n i c  m i c e l l e s ,  t h i s  r e p u l s i o n  tends t o  l i m i t  t he  s i z e  and CMC o f  
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224 ARMSTRONG 

TABLE I I 

Selected M i c e l l e  Forming S u r f a c t a n t s  aad 
Associated Aggregat ional  Parameters. 

C a S u r f a c t a n t  CMC, M (25'CL - Nb - 
C a t i o n i c  

Hexadecyl tr imethy l  

Te t radecy l  t r i m e t h y l -  

Dodecyl t r i m e t h y l -  

ammon i um brom i d  e 9.2 61 0.10 

ammonium bromide 3.5 75 0.1 

ammon i um brom i d  e 1.5 x l o m 2  50 0.19- 
Dod ec y l  anmon i um 

Hexad ec y l  p y r  i d  i n  i um 

0.12 
c h l  o r i d e  1.5 x l o m 2  55.5 0.64- 

0.11 
c h l o r i d e  9 10-4 95e 0.31 

A n  i o n  i c  - 
Sodium t e t r a -  

Sodium d o d e c y l s u l f a t e  8.1 x 

L i t h i u m  d o d e c y l s u l f a t e  8.8 x 
Sod i um 4-dod ec y l  benzene- 

Sodium dodecy l -  

Sodium dodecanoate 2.4 x lo-' 
Potassium p e r f 1  uoro- 

2.8 x lo - '  
Sodium p e r f l u o r o -  

L i t h i u m  p e r f l u o r o -  

Sodium p e r f l u o r o -  

decy l  su l  f a t e  2.1 

s u l  f ona te  1.6 x 

s u l  f ona te  9.8 

he p t  a no a t e 

heptanoate 3.0 x 

oc t y l  sul f ona te  6.3 

o c t y l  su l  f ona te  - 

SOf - 
62 0.13- 

0.21 
63 0.23 

24 - 

;ih 0.36i 

Z w i  t t e r i o n i c  

n-Oc t y l  -N, N-dimethyl 

n-Dod ec y l  -N, N-d ime t h y 1 - 
anmoni um-3- 
prop i o n a t e  2.5 x 10-1 24 0 

ammo n i um-3 - - p r o  p i  o na t e 5.3 10-3 j 0 

25 
16 

32 - 
25.6 

8.0 

(0 

56.5 

(continued) 
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MICELLES IN SEPARATIONS 225 

TABLE 11, Continued 

Sur fac  t a n  t 

n-Dodecyl -N,N-d i rnethy l -  
ammonium-3 propane-1 - 
s u l  f o n a t e  

n-Dodecyl -N,N-d i rnethy l -  
g l y c i n e  

No n i o n  i c  

Pol yoxye thy l  ene ( 6 )  
dodecyl e t h e r  

Pol yox ye t  h y l  ene (12) 
dodecyl e t h e r  

Po lyoxye thy lene  (23) 
dodecyl e t h e r  

Po lyoxye thy lene  (7 )  
hexadecyl e t h e r  

Po lyoxye thy lene  ( 1 2 )  
hexadecyl e t h e r  

Po lyoxye thy lene  (10) 
nonyl  phenyl e t h e r  

n-Octy l  g l u c o s i d e  
n-Dodec y l  g 1 ucos i d e  

CML, M (25°C) 

3 

1.8 

8.7 

5 

5.5 

7.5 

1.9 

1.7 x 

7.5 x 10:; 
2.5 x 10 

C 
0 - Nb - 

55 0 

0 - 

4 00 0 

81 0 

4 0  0 

5 94 0 

152 0 

2 76k 0 
52 0 

0 - 

I KPd 

a A l l  l i s t e d  parameters were determined i n  pure water  a t  25°C 
u n l e s s  o t h e r w i s e  i n d i c a t e d .  A l l  d a t a  i s  summerized from 
r e f e r e n c e s  19-29. 

bAggregat ion number (25'C). 

' F r a c t i o n  o f  charge. 

d K r a f f t  P o i n t ,  "C. 
e 

fMeasured a t  60'C. 

'Measured a t  38°C. 

hMeasured i n  0.013 M K B r .  

Measured i n  0.21 M NaC1. i 

jMeasured a t  30'C. 

kTaken from: R. Roxby and B.  P. Mills, Fed. Proc., 39, 6, 1985 

Measured i n  0.0175 M NaC1. 

(1980). 
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226 ARMSTRONG 

- 
PRECIPITATE MICELLES + MONOMER 
+MONOMER 

- 
CMC C u r v y  

- 
MONOMER 

I 1 1 
0 10 20 30 40 50 

- 
PRECIPITATE MICELLES + MONOMER 
+MONOMER 

- 
CMC C u r v y  

- 
MONOMER 

I 1 1 
0 10 20 30 40 50 

Temperature, OC 

F i g u r e  6 

An example o f  a phase diagram f o r  an aqueous i o n i c  s u r f a c t a n t  
system. 

the  aggregate. Favorable e n t r o p i c  and van de r  Waal 's f o r c e s  a r e  

though t  t o  p r o v i d e  t h e  d r i v i n g  f o r c e  f o r  agg rega t ion  o f  a l l  normal 

m i ce1  1 es. 19-28 The two remain ing f a c t o r s  t h a t  a l s o  c o n t r i b u t e  t o  

a m i c e l l e ' s  s i z e  and shape a r e  s u r f a c e  energy m i n i m i z a t i o n  and 

s t e r i c  e x c l u s i o n  ( p a r t i c u l a r l y  o f  t h e  " t a i l s " ) . 4 1  I n  s o l u t i o n s  o f  

h i g h  i o n i c  s t r e n g t h ,  where e l e c t r o s t a t i c  r e p u l s i o n s  a r e  min imized,  

t h e  C M C ' s  and aggrega t ion  numbers o f  i o n i c  m i c e l l e s  tend t o  

approach those o f  analogous n o n i o n i c  m i c e l l e s .  Pure n o n i o n i c  

m i c e l l e s  o b v i o u s l y  have no f r a c t i o n  o f  charge. T h e i r  "head 

groups'' do have s i g n i f i c a n t  d i p o l e  manents, however, and t h e y  can 
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MICELLES IN SEPARATIONS 2 2 1  

TABLE 111 

Cloud P o i n t s  o f  Several Nonionic  S u r f a c t a n t s a  

S u r f a c t a n t b  

Pol  yox y e t h y l  ene (9.5) 
i sooc t y l  phenyl e t h e r  
( T r i t o n  X-120) 

I1 II 

II II 

Pol yoxyethy l  ene (7.5) 
nonyl  phenyl e t h e r  

,I I t  

II I f  

Po lyoxye thy lene  (6 )  
dodecyl e the r  

I, ,I 

Po lyoxye thy l  ene (20)  
nonyl phenyl e t h e r  

Pol yoxyethy l  ene (23) 
dodecyl e the r  

C1 oud 
Go nc en tr a t i o n  P o i n t ,  'C 

0.25% 

7.0% 

33.0% 

0.125% 

5.0% 

20.0% 

1% 

10% 

10% 

1-6% 

64 

65 

76 

1 

6 

25 

48 

50.5 

> l o o  

100 

aSummarized d a t a  frm r e f e r e n c e s  19, 20, 123 and 160. 

bThe number i n  parentheses a f t e r  po l yoxye thy lene  r e f e r s  t o  the 
average number o f  oxye thy lene  groups. 

a l s o  form weak complexes w i t h  some meta l  i o n  i m p u r i t i e s  t h a t  may 

b e  p resen t  i n  s o l u t i o n .  Most unusual i s  t h e  f a c t  t h a t  n o n i o n i c  

s u r f a c t a n t s  ( u n l  i k e  i o n i c  s u r f a c t a n t s )  can undergo a phase 

s e p a r a t i o n  ( r e f e r r e d  t o  as t h e  c l o u d  p o i n t )  w i t h  i n c r e a s i n g  

temperature i n  aqueous s o l u t i o n .  Table I 1 1  l i s t s  c l o u d  p o i n t s  o f  
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228 ARMSTRONG 

TPBLE IV 

A Canparison of Solute SoldIility in Aqueous and Micellar Solutions 

Molar 
Sol b i l  i t y  

Canpud in Water 

Pyrene 6 x 

Peryleneb 1.6 x lo-' 

Anthraceneb 2.2 x 

l-BmnO- 
naphthaleneb 4.5 x 

Bi mnyl 

Benzeneb 

N*thylc 
acridone 

Lucigenin' 

d Prcgesteone 

Methyl- 
parabene 

parabene 
Ethyl- 

4.1 x lo5 

2.3 x 

3.45 x lo5 

1.28 x lom2 

1 x 10'4 

1.45 x 

5.4 

Molar 
Surfactant a SOldIility i n  

Concentration Micellar Solution 

0.07 M SDS 
0.04 M HTAB 

0.01 M SDS 
0.01 M HTAB 

0.02 M SDS 
0.02 M HTAB 

0.04 M SDS 
O . 0 2 M  HTPB 

0.05 M 9 s  
0.05 M HTM 

0.05 M SDS 
0.05 M HTPB 

0.05 M SDS 
0.05 M HTPB 

0.01 M HTAC 
0.4 M HTAC 
0.01 M SOS 
0.4 M SDS 
0.1 M 9-12 
0.01 M Brij-35 
0.2 M Brij-35 

0.4 M HTAC 
0.04 M SDS 

0.05 M TAB 

0.04 M SDS 

0.04M SDS 

7 x 10:; 
4.1 x 10 

1.9 
3.3 x 
6.3 x 101; 
3.3 x 10 

3.8 x lo-' 
1.11 

6.6 x 10-1 
4.3 

2.1 x 10-1 
1.0 

2.5 
12.3 

-4 3.2 x 

6.4 x 10 

7.8 x lo4 
1.4 x 10 

1.0 x lo-3 

3.5 x 10: 

3.4 x 
-4 5.95 x 

8.92 x 10 

8.7 

3.39 x 

2.27 x 

Solubility 
Enhancement 

Factor 

120,m 
680,000 

1,190,000 
1,500,000 

28,700 
150,OoO 

1,700 
5,000 

15,000 
96, 000 

5,100 
24, OOO 

- 

109 
530 

9 
290 

2 
101 
23 

4 
99 

4.6 
1.7 

87 

2.3 

4.2 

(continued) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



MICELLES IN SEPARATIONS 229 

TMLE IV . ,  Continued 

Molar Fbl ar Sol h i 1  i t y  
Sol tbil i t y  Surfactmt So l i b i l i t y  in Enhancenent 

Canpimi i n  Water Concentrationa Micellar Solution Factor 

Butyl- 
parabened 1.1 x 0.04M 9 s  2.43 x 22 

Sul m e t h y l  -d 

Sulphis-d 

Iodined 0.2 m j m l  200 g/L CMG 27 y / m l  135 

thiadiazole 0.4 q / m l  30% P-80 11.3 y / m l  28 

oxazole 0.3 q / m l  30% P-80 83 y / m l  27 

aSurfactant abbreviations are as follows: sodim ddecylsulfate (SDS) ,  
h e x a d e c  y l  t r  i m e t h y l  ammon i u m  b r o m i d e  ( H T A B )  , 
3-(N-dodecyl -N,N-dimethyl ammi no) propane-1 - su l  f ona te  ( SB-l2), 
tetradecyltrimethylaniun brunide (TTAB), p l p r b a t e  80 ( P a ) ,  and 
ce tmacqeo l  (UIG) . 
bM. Almgren, F. Grieser and J. K. m a s ,  J. h. Chem. Soc., 101, 279 (1979). 

%. L. Hinze, T. E. Riehl, H. N. Singh and Y. Baba, Anal. Chem., 56, 2180 (1984). 

Attwood ard A. T. Florence, " Surfactant System" Chapnan and Hall, New York, 
1983. 

seve ra l  non ion i c  s u r f a c t a n t s .  Note t h a t  t h e  c loud  p o i n t  can v a r y  

w i t h  s u r f a c t a n t  c o n c e n t r a t i o n  and w i t h  any i m p u r i t i e s  p r e s e n t  i n  

sol u t i o n .  

The a s s o c i a t i o n  o r  s o l u b i l i z a t i o n  o f  s o l u t e s  b y  aqueous 

m i c e l l e s  i s  r e s p o n s i b l e  f o r  most o f  t h e  u s e f u l  a p p l i c a t i o n s  o f  

these aggregates. S o l u t e s  can i n t e r a c t  e l e c t r o s t a t i c a l l y  (e.g., 

i n o r g a n i c  i o n s ) ,  hydrophobica l  l y  o r  more 1 i k e l  y b y  a comb ina t ion  

o f  these e f f e c t s  ( b o t h  f a c t o r s  a r e  i nvo l ved  f o r  most o r g a n i c  

s o l  Utes). 4 3 s 4 4  Tab le  I V  shows t h a t  a s s o c i a t i o n  w i t h  a m i c e l l e  can 
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230 ARMSTRONG 

increase the  s o l u b i l i t y  of a va r i e ty  of sparingly water so luble  

canpounds, sometimes b y  several o rders  of magnitude. I t  was 
o r ig ina l ly  believed t h a t  hydrophobic so lu t e s  were dissolved in the 

hydrocarbon "core" o f  the  mice l le  in much the  same manner a s  they 

d i s so lve  in an organic solvent.  This analogy may be s u f f i c i e n t  

f o r  o i l  and water  mic roemuls ions ,45  b u t  i s  p robably  an 

oversimplification f o r  the normal mice l la r  system. Given the 

s t ruc tu re  of the  Menger, Fromherz o r  Dill mice l le  i t  i s  l i k e l y  

t h a t  the in te rac t ion  between many hydrophobic sol Utes and the  

mice l le  may be somewhat a k i n  to a surface adsorption phenomenum 

where b o t h  hydrophobic and e l e c t r o s t a t i c  i n t e rac t ions  a r e  

important. This would n o t  only explain the apparent presence of  

r e l a t i v e l y  nonpolar so lu t e s  (such a s  benzene) near the surface of 

the  m i ~ e l l e , ~ ~  b u t  a l so  account f o r  the  f a c t  t ha t  some polar 

so lu tes  have a g rea t e r  s o l u b i l i t y  in micellar so lu t ions  than i n  

e i t he r  water o r  hydrocarbon solvents.27 Some so lu t e s ,  such a s  

a1 ipha t ic  hydrocarbons, may s t i l l  have access t o  o r  be sol u b i l  ized 

by  the  hydrophobic core  of t h e  micelle.  Certain so lu t e s  t h a t  can 

comicellize (such a s  dodecanol) obviously will  have a portion of 

t h e i r  s t ruc tu re  integrated into the  mice l le  core.  Consequently, 

t he  mice l le  can be thought o f  a s  having a t  l e a s t  two type of 

i n t e r a c t i o n  s i t e s .  3 2 * 4 6 y 4 7  One which i s  ana logous  t o  a 

"hydrophobic dissolved s t a t e "  ( i . e . ,  the  core) and another which 

i s  a more polar "adsorbed s t a t e "  near the mice l le  surface.  32 ,46  

Micelles a r e  sometimes mistakenly thought of a s  s t a t i c  

species.  In r e a l i t y  they, and any so lu t e s  associated with them, 
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MICELLES IN SEPARATIONS 231 

a r e  i n  dynamic e q u i l  i b r i u n  w i t h  t h e i r  surrounding.  S u r f a c t a n t  

monomers l e a v e  and e n t e r  t h e  m i c e l l e  on a microsecond t i m e  

sca l  e. 23-27 These monomers a r e  f r e e l y  exchanged w i t h  monomers i n  

the  b u l k  s o l u t i o n ,  o t h e r  m i c e l l e s ,  a s  w e l l  as w i t h  s u r f a c t a n t s  

adsorbed on any s o l  i d  sur faces.  Complete d i s s o l u t i o n  and 

r e d i s t r i b u t i o n  o f  a m i c e l l e  can occu r  i n  a m i l l i s e c o n d  t i m e  

scale.  23-27 S o l u t e s  assoc ia ted  w i t h  a m i c e l l e  can a l s o  be f r e e l y  

exchanged w i t h  t h e  b u l k  s o l u t i o n ,  o t h e r  m i c e l l e s  o r  any o t h e r  

s u r f a c e  present .  

Compounds t h a t  a s s o c i a t e  w i t h  a m i c e l l e  have c h a r a c t e r i s t i c  

b i n d i n g  c o n s t a n t s  (K's) o r  p a r t i t i o n  c o e f f i c i e n t s  ( P ' s ) .  The 

b i n d i n g  cons tan t  o f  s o l u t e  t o  a m i c e l l e  i s  e q u i v a l e n t  t o  t h e  r a t i o  

o f  t he  en t rance  and e x i t  r a t e  cons tan ts .  T y p i c a l  e n t r a n c e  and 

e x i t  r a t e  c o n s t a n t s  f o r  seve ra l  s o l u t e s  t o  m i c e l l e s  have been 

I t i s  i m p o r t a n t  t o  no te  t h a t  a s o l u t e  can 

i n t e r a c t  w i t h  a m i c e l l e  w i t h o u t  b i n d i n g  o r  p a r t i t i o n i n g  t o  i t . For 

example, an i o n  o f  t h e  same charge as an i o n i c  m i c e l l e  c o u l d  be 

e l e c t r o s t a t i c a l l y  r e p e l l e d  when i t s  doub le  l a y e r  i n t e r a c t s  w i t h  

t h a t  o f  t h e  m i c e l l e .  

The a s s o c i a t i o n  b e h a v i o r  o f  normal aqueous m i c e l l e s  i s  

f requen t1  y r e f e r r e d  t o  as a "monomer:n-mer" a s s o c i a t i o n  and i s  

c h a r a c t e r i z e d  by  equa t ion  1. Where S i s  t h e  s e l f - a s s o c i a t i n g  

' 'n n S1 - 

s o l u t e  and n i s  t h e  aggrega t ion  number ( t y p i c a l l y  n = 2 0  t o  100)  
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232 ARMSTRONG 

f o r  i o n i c  m i c e l l e s  and somewhat l a r g e r  f o r  non ion i c  m i c e l l e s ) .  I n  

i t s  i d e a l  form, t h i s  model a l l o w s  s u r f a c t a n t  t o  be p r e s e n t  as 

monomers and monodisperse aggregates.  When a d d i t i o n a l  s u r f a c t a n t  

i s  added t o  t h e  system, more m i c e l l e s  o f  t h e  same s i z e  and 

aggrega t ion  number a r e  produced w h i l e  t h e  c o n c e n t r a t i o n  o f  t h e  

monomer remains r o u g h l y  c o n s t a n t  and e q u i v a l e n t  t o  t h e  CMC. 

I n  r e a l i t y ,  m i c e l l e s  a r e  t h o u g h t  t o  be n a r r o w l y  d i s p e r s  b u t  n o t  

monodisperse. Near t h e  CMC, a d d i t i o n  o f  s u r f a c t a n t  does indeed 

seem t o  produce a d d i t i o n a l ,  " rep1  i c a t e  m i c e l l e s . "  A t  h i g h e r  

c o n c e n t r a t i o n s ,  however, t h e  s i z e ,  shape, a g g r e g a t i o n  number, e t c .  

o f  some m i c e l l e s  w i l l  change. Fo r  example, m i c e l l e s  composed o f  

hexadecyl t r i m e t h y l a m m o n i m  bromide (HTAB) w i l l  undergo sphere t o  

rod t r a n s i t i o n s  w i t h  an accompanying i nc rease  i n  a g g r e g a t i o n  

number a t  s u t f i c i e n t l y  h i g h  s u r f a c t a n t  c o n c e n t r a t i o n s .  L y o t r o p i c  

l i q u i d  c r y s t a l  f o r m a t i o n  can e v e n t u a l l y  occur  a t  even h i g h e r  

c o n c e n t r a t i o n s .  On t h e  o t h e r  h a n d ,  m i c e l l e s  o f  

hexadecyl t r imethy lammoniun c h l o r i d e  (HTAC) tend  t o  remain 

s p h e r i c a l  i n  shape a t  e q u i v a l e n t  c o n c e n t r a t i o n s .  I n  a d d i t i o n ,  t h e  

monomer c o n c e n t r a t i o n  tends  t o  i n c r e a s e  s l  i g h t l  y w i t h  i n c r e a s i n g  

s u r f a c t a n t  and m i c e l l e  c o n c e n t r a t i o n .  However, a t  s u r f a c t a n t  

c o n c e n t r a t i o n s  near  t h e  CMC, t h e  amount o f  a d d i t i o n a l  monomer i s  

s u f f i c i e n t l y  smal l  t h a t  i t  i s  o f t e n  n e g l i g i b l e .  

19-28 

6. Reversed M i c e l l e s  

When s u r f a c t a n t s  a r e  d i s s o l v e d  i n  nonpo la r  o r g a n i c  

s o l v e n t s  r a t h e r  t h a n  water ,  a g g r e g a t i o n  can a l s o  occur .  U n l i k e  
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MICELLES IN SEPARATIONS 233 

aqueous mice l l e s ,  the  hydrophilic "head groups" a r e  located in the  

i n t e r i o r  of the aggregate while the  hydrophobic " t a i l  5'' extend 

in to  the continuous nonpolar phase (Figure 7 ) .  These aggregates 

a r e  a l so  dynamic-equilibriun species.  I t  has been argued t h a t  the 

term "micelle" should n o t  be used for these aggregates because the 

forces  t h a t  1 ead t o  t h e i r  formation, t h e i r  aggregational behavior, 

s t r u c t u r e  and p roper t ies  a r e  genera l ly  d i f f e r e n t  from those o f  

normal aqueous mice l les .  I t  has even been implied t h a t  the 

presence of t r a c e  impurit ies ( p a r t i c u l a r l y  watw,  which i s  nearly 

impossibl e to canpletel  y remove from sur fac tan ts )  may be necessary 

f o r  sur fac tan t  aggregation i n  organic solvents.  50, 5' Despite 

these f a c t s  the term "reversed micellar" has achieved a widespread 

Figure 7 

Model of a reversed micelle i n  a nonpolar organic solvent from 
which a l l  possible water and impurit ies have been removed. 
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ARMSTRONG 234 

popular  acceptance f o r  t hese  aggregates. 

The a s s o c i a t i o n  energy o f  reve rsed  m i c e l l e s  seems t o  b e  

m a i n l y  e n t h a l p i c  i n  n a t u r e  r a t h e r  than e n t r o p i c  as i n  the  case o f  

aqueous micel'les. I o n  p a i r s  and d i p o l a r  i n t e r a c t i o n s  between 

s u r f a c t a n t s  and t h e i r  coun te r  i ons  p redan ina te  i n  nonpolar-organic  

media. 51-53 Consequently, one m i g h t  expec t  t he  aggrega t iona l  

behav io r  o f  reversed m i c e l l e s  t o  be d i f f e r e n t  from t h a t  o f  normal 

aqueous m i c e l l e s .  The a s s o c i a t i o n  b e h a v i o r  o f  reve rsed  m i c e l l e s  

can b e  d i v i d e d  i n t o  a t  l e a s t  two i d e a l  types.  The f i r s t  t y p e  i s  

sequen t ia l  i n d e f i n i t e  s e l f - a s s o c i a t i o n  as i n d i c a t e d  i n  equa t ion  

( 2 ) . 5 2 - 5 4  Where: S is a s u r f a c t a n t  monomer, S2 i s  a d imer ,  S3 i s  

a t r i m e r  and the  e q u i l i b r i u n  cons tan ts  (K1, K 2 ,  e t c )  a r e  equal. 

S u r f a c t a n t  systems such as dodecylammoniun p rop iona te  ( D A P )  i n  

cyc lohexane o r  benzene and dodecylammoniun pyrene-1-butyrate 

( D A P B )  i n  benzene, e x h i b i t  t h i s  t y p e  o f  behav io r ,  The aggregates 

a r e  g e n e r a l l y  small  i n  t h e  absence o f  i m p u r i t i e s  (average n = 3-6) 

b u t  i n c r e a s e  i n  s i z e  w i t h  i n c r e a s i n g  s u r f a c t a n t  

c o n c e n t r a t i o n .  51956 I t  i s  o b v i o u s l y  d i f f i c u l t  t o  d e f i n e  a CMC f o r  

such a system.53 A t  bes t ,  one can d e f i n e  i t  as t h e  c o n c e n t r a t i o n  

a t  which t h e  onse t  o f  any aggrega t ion  occurs,  Other s u r f a c t a n t s  
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MICELLES I N  SEPARATIONS 235 

(e.g., d i o c t y l s u l f o s u c c i n a t e  and dodecylammoniun benzoate) seem t o  

form reversed m i c e l l e s  v i a  monomer:n-mer t ype  aggregat ion,  a s  i n  

equa t ion  ( I ) .  58959 T h i s  agg rega t iona l  behav io r  i s  somewhat 

s i m i l a r  t o  t h a t  o f  aqueous m i c e l l e s .  The aggrega t ion  number a l s o  

tends t o  b e  l a r g e r  f o r  t h i s  second t ype  o f  reve rsed  m i c e l l e .  

U n l i k e  t h e  f i r s t  t ype  o f  reversed m i c e l l e ,  t h e  second t ype  seems 

t o  have a reasonably  d i s t i n c t  CMC. It i s  apparen t  t h a t  t h e  

reversed m i c e l l e  i s  a f f e c t e d  by  a number o f  f a c t o r s  i n c l u d i n g  the  

n a t u r e  o f  t h e  s u r f a c t a n t  and /o r  s u r f a c t a n t  coun te r ion ,  s o l v e n t ,  

c o n c e n t r a t i o n ,  temperature,  and t h e  presence o f  any s o l u t e s  and /o r  

i m p u r i t i e s  such as water. 

Reversed m i c e l l e s  tend t o  a d j u s t  t h e i r  s i z e  t o  accommodate o r  

surround whatever i m p u r i t y  o r  s o l u t e  i s  i n t roduced  i n t o  the  

s o l u t i o n .  Var ious amounts o f  water (and o t h e r  p o l a r  s o l u t e s  can 

be s o l u b i l i z e d  i n  the  h y d r o p h i l i c  c o r e  o f  a reversed m i c e l l e  

( F i g u r e  8).  The n a t u r e  o f  t h e  water i n  t h e  c o r e  o f  a reve rsed  

m i c e l l e  i s  d e p e n d e n t  o n  i t s  c o n c e n t r a t i o n .  53 A t  l o w  

c o n c e n t r a t i o n s  ( ( 0 . 4  M) t h e r e  i s  l i t t l e  o r  no " f r e e "  water, as  a l l  

o f  t h e  mo lecu les  a r e  occupied i n  h y d r a t i n g  the  p o l a r  "head-groups" 

and coun te r ions  o f  t h e  s u r f a c t a n t .  T h i s  "bound" water  e x h i b i t s  

h i g h  " m i c r o v i s c o s i t i e s "  and o t h e r  unusual proper tie^.^^ A t  h i g h e r  

c o n c e n t r a t i o n s  o f  added water  a "pool"  o f  f r e e  o r  b u l k  water  i s  

a l s o  p resen t  ( F i g u r e  8). 

The reve rsed  m i c e l l e  i s  a good model f o r  t he  a c t i v e  s i t e  o f  

an enzyme. Much l a r g e r  r a t e  enhancenents f o r  r e a c t i o n s  have been 

observed i n  reversed m i c e l l e s  than  i n  normal m i c e l l e s  f o r  
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236 ARMSTRONG 

F i g u r e  8 

Model o f  an  e x p a n d e d - r e v e r s e d  m i c e 1  l e  o r  w a t e r - i n - o i l  
microemulsion. The water  between t h e  dashed l i n e s  i s  t i g h t l y  
bound t o  t h e  headgroups and assoc ia ted  coun te r ions .  Consequently 
i t s  p r o p e r t i e s  and behav io r  a r e  somewhat d i f f e r e n t  f rom t h a t  o f  
t h e  b u l k  water. 

example.53 The reasons f o r  t h i s  a r e  apparent .  One can sequester  

a l a r g e  number o f  r e a c t a n t  spec ies i n  a v e r y  smal l  reversed 

m i c e l l a r  co re ,  These r e a c t a n t s  can b e  o r i e n t e d  a long an 

i n t e r f a c e .  One can f u n c t i o n a l  i z e  t h e  s u r f a c t a n t  head groups 

and/or  coun te r ions  i n  a reversed m i c e l l e .  Consequently one can 

l o c a t e  n u c l e o p h i l  i c ,  hydrogen bonding and/or  e l e c t r o n  w i thd raw ing  

groups i n  c l o s e  p r o x i m i t y  t o  one ' s  r e a c t a n t s .  L a s t l y ,  one can 

c o n t r o l  t h e  " t ype"  and amount o f  water  p resen t  i n  the  r e a c t i o n  

core.  
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Perhaps t h e  most i m p o r t a n t  f e a t u r e  o f  reversed m i c e l l e s ,  f rom 

a separa t i ons  p o i n t  o f  view, i s  t h e i r  a b i l i t y  t o  s e l e c t i v e l y  

s o l u b i l i z e  a v a r i e t y  o f  p o l a r  s o l u t e s  i n  a nonpo la r  media. 

M i c e l l a r  e f f e c t s  on the  phys ico-chemical  p r o p e r t i e s  o f  v a r i o u s  

s o l u t e s  cou ld  a l s o  be use fu l  i n  t h e i r  d e t e c t i o n  as w e l l  as i n  

s t a b i l i z i n g  e a s i l y  decomposed compounds. T h i s  i s  t r u e  f o r  normal 

as w e l l  as  reve rsed  m i c e l l e s .  

I I I. L I  Q U I  0 CHROMATOGRAPHY 

A. Gel Permeation Chromatography 

Aqueous mice1 l a r  s o l u t i o n s  have been s u c c e s s f u l l y  used 

as  m o b i l e  phases i n  a v a r i e t y  o f  l i q u i d  chromatographic 

techniques.  A l though m i c e l l a r  m o b i l e  phases have been e x t e n s i v e l y  

u t i l i z e d  i n  " h i g h  performance 1 i q u i d  chromatography" (HPLC), t h e i r  

use o r i g i n a t e d  w i t h  g e l  permeation chromatography (GPC) and t h i n  

l a y e r  chromatography (TLC). The f i r s t  d e l i b e r a t e  use o f  t h e  

unique p r o p e r t i e s  o f  m i c e l l e s  i n  a chromatographic s e p a r a t i o n  was 

p robab ly  i n  t h e  GPC r e s o l u t i o n  o f  t h r e e  t r a n s f e r  RNAs on a 109 x 

1.8 cm Sephadex 6-100 column (see F i g u r e  9).60 I n  o r d e r  t o  

accompl ish t h i s  separa t i on ,  t h e  chromatographic c o n d i t i o n s  had t o  

b e  c a r e f u l l y  c o n t r o l l e d .  The i o n i c  s t r e n g t h  of  t h e  m o b i l e  phase 

was ad jus ted  so t h a t  t h e  hydrated tRNAs c o u l d  j u s t  e n t e r  t h e  g e l  

w h i l e  t h e  tRNA-micel le complex was excluded from t h e  i n t e r s t i t i a l  

volume o f  t h e  g e l  .60 Consequently, f r a c t i o n a t i o n  was t h e  r e s u l t  

o f  d i f f e r e n t i a l  b i n d i n g  o f  tRNAs t o  t h e  c a t i o n i c  

hexadecyltr imethylammonium c h l o r i d e  (HTAC) m i c e l l e  which was a 

component o f  t h e  m o b i l e  phase. 60 
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I 2 3  

U 

1 

60 40 20 
Froction Number 

F i g u r e  9 

Separa t i on  o f  t R N 9  o f  Sephadex 6-100-120 i n  t h e  presence o f  1.0 M 
NaCl and 1.0 10- M HTAC. Glutamic a c i d - I 1  tRNA ( l ) ,  t y r o s i n e  
t R N A  ( 2 )  and pheny la lan ine  tRNA ( 3 ) .  Each f r a c t i o n  c o n t a i n s  3.2 
m l .  Repr in ted  w i t h  pe rm iss ion  f rom r e f .  7. 

A more s t r a i g h t - f o r w a r d  approach f o r  m i c e l l a r  GPC s e p a r a t i o n s  

i n v o l v e s  t h e  use o f  a smal l  pore s t a t i o n a r y  phase (e.g., Sephadex 

6-25 o r  G-10). I n  t h i s  case t h e  r e l a t i v e l y  l a r g e  m i c e l l e  can 

e x i s t  o n l y  i n  t h e  excluded volume o f  t h e  column (where i t  i s  

r a p i d l y  e l u t e d )  w h i l e  smal l  s o l u t e s  can a l s o  e x i s t  i n  t h e  

i n t e r s t i t i a l  pore volume ( r e s u l t i n g  i n  l o n g e r  e l u t i o n  t imes ) .  

However, i f  a smal l  s o l u t e  b i n d s  t o  t h e  m i c e l l a r  c m p o n e n t  o f  t h e  

m o b i l e  phase, i t  w i l l  tend t o  e l u t e  more r a p i d l y  ( w i t h  t h e  

m i c e l l e ) .  Consequently, t h e  GPC e l u t i o n  b e h a v i o r  o f  a small  

s o l u t e  i s  r e g u l a t e d  by  i t s  i n t e r a c t i o n  w i t h  t h e  m i c e l l e  and n o t  b y  

t h e  t r a d i t i o n a l  e x c l u s i o n  mechanism. T h i s  b e h a v i o r  i s  i l l u s t r a t e d  

i n  F i g u r e  The nuc leos ides  adenosine and u r i d i n e  a re  n o t  

a p p r e c i a b l y  separated by  GPC w i t h  an aqueous o r  b u f f e r e d  m o b i l e  

phase ( F i g u r e  10A). When sodium dodecanoate (SO) m i c e l l e s  a r e  
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(4 
U+A 

239 

U A 

1 I I J 

Fraction Number 
20 40 60 

F i g u r e  10  

His togram ( a )  shows t h e  e l u t i o n  p a t t e r n  o f  u r i d i n e  (U) and 
adenosine ( A )  on a Sephadex 6-25 column us ing  an aqueous b u f f e r  
s o l u t i o n .  His togram ( b )  shows t h e  r e s u l t  o f  an analogous 
exper iment  when 0.02 g/ml sodium dodecanoate was added t o  t h e  
m o b i l e  phase. 

added t o  the m o b i l e  phase, however, s e p a r a t i o n  i s  achieved ( F i g u r e  

1OB) .  U r i d i n e  i s  e l u t e d  more q u i c k l y  because i t  b i n d s  more 

s t r o n g l y  t o  SO m i c e l l e s .  61,62 

S h o r t l y  a f t e r  t h e  m i c e l l a r  s e p a r a t i o n  o f  tRNAs was 

r e p o r t e d  ,60 Maley and Guarino found t h a t  b a s i c  and aromat ic  amino 

a c i d s  cou ld  be separated from a c i d i c  and n e u t r a l  amino a c i d s  b y  

chromatography on a 0.9 x 90 cm Sephadex 6-25 column us ing  an 

63 aqueous sodium dodecyl s u l f a t e  (SDS)-formic ac id  m o b i l e  phase. 
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240 ARMSTRONG 

They speculated t h a t  d i f f e r e n t  amino a c i d s  would b i n d  d i f f e r e n t  

amounts o f  SDS t h e r b y  fo rm ing  aggregates o f  d i f f e r e n t  s i z e  t h a t  

cou ld  separate v i a  c l a s s i c  s i z e  exc lus ion .  Today, we know t h a t  

t h i s  mechanism i s  improbable and t h a t  t h e  separa t i on  was due t o  

t h e  p a r t i t i o n i n g  o f  smal l  s o l u t e s  t o  l a r g e ,  r o u g h l y  u n i f o r m  

m i c e l l a r  aggregates t h a t  e x i s t e d  o n l y  i n  t h e  excluded volume o f  

t he  column. Bo th  t h e  p ro tona ted -bas ic  and hydrophobic amino a c i d s  

e l u t e d  r a p i d l y  because they  p a r t i t i o n e d  s t r o n g l y  t o  SDS m i c e l l e s .  

Regardless, t h i s  remains one o f  t h e  i n t e r e s t i n g  e a r l y  s t u d i e s  

i n v o l v i n g  m i c e l l a r  m o b i l e  phases i n  chromatography. 63 

The e f f e c t  o f  s o l u t e  p a r t i t i o n i n g  (between m i c e l l a r  and 

aqueous phases) d u r i n g  g e l  f i l t r a t i o n  on columns o f  Sephadex 6-25 

was f i r s t  recognized by H e r r i e s  e t  a l .  and used t o  c a l c u l a t e  

p a r t i t i o n   coefficient^.^^ T h e i r  h i g h l y  p e r t i n e n t  r e s u l t s  w i l l  be 

considered i n  s e c t i o n  111-D, on Theory. U n f o r t u n a t e l y  no 

c o n s i d e r a t i o n  was g i v e n  t o  the  p o s s i b l e  use fu lness  o f  m i c e l l a r  

m o b i l e  phases f o r  chromatography i n  genera l  o r  GPC i n  p a r t i c u l a r .  

T h i s  was understandable a t  t h e  t i m e  s i n c e  t h e  r e s o l u t i o n  one c o u l d  

o b t a i n  v i a  t h e  micel lar-Sephadex 6-25 techn ique  was s u f f i c i e n t l y  

poor as  t o  make i t  o f  ques t i onab le  use f o r  most separa t i ons .  

The e a r l y  micel lar-GPC work c o u l d  be considered more o f  a 

n o v e l t y  than  a v i a b l e  a n a l y t i c a l  technique.  60-64 However, i t  was 

u s e f u l  i n  t h a t  i t  prov ided an e x p l a n a t i o n  f o r  a number o f  

chromatographic anomalies. It a l s o  i l l u s t r a t e d  t h e  p o t e n t i a l  o f  

us ing  m i c e l l a r  m o b i l e  phases t o  a l t e r  s e l e c t i v i t y  and prov ided a 

mechanism t h a t  would serve as a b a s i s  f o r  f u t u r e  r e l a t e d  

t ec hn i ques . 
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MICELLES IN SEPARATIONS 241 

The development o f  a h i g h  performance GPC pack ing  t h a t  has 

an e x c l u s i o n  l i m i t  o f  about one t o  two thousand and i s  compa t ib le  

w i t h  aqueous m i c e l l a r  m o b i l e  phases would a l l o w  micel lar-GPC t o  

deve lop  i n t o  a v i a b l e  technique.  I n i t i a l  a t tempts  t o  use 

commerc ia l l y  a v a i l a b l e  s i l i c a  g e l  based, o r  c r o s s - l i n k e d  polymer 

pack ings i n  t h i s  mode i n d i c a t e d  t h a t  t h e r e  were c o n s i d e r a b l e  

problems w i t h  packing s t a b i l i t y ,  a d s o r p t i o n  e f f e c t s  and l a c k  o f  

s u f f i c i en t i n t e r  s t i t i  a 1 v o 1 um e . 65 

B. Thin Layer Chromatography 

M i c e l l a r  s o l u t i o n s  have been used t o  separate a wide 

v a r i e t y  o f  compounds i n  t h i n  l a y e r  chromatography (TLC). Indeed, 

many o f  t h e  advantages and c h a r a c t e r i s t i c s  o f  t hese  m o b l i e  phases 

t h a t  a r e  c u r r e n t l y  c i t e d  i n  HPLC were f i r s t  developed i n  TLC. 

M i c e l l a r  m o b i l e  phases were f i r s t  used i n  TLC as  a means t o  

e l i m i n a t e  t h e  use o f  organ ic  so l ve r i t s ,  and t h e i r  assoc ia ted  

problems from t h e  chromatographic  environment.8 A t  t h e  t i m e  t h i s  

was considered somewhat unusual, g i v e n  t h e  accepted dogma t h a t  

o rgan ic  s o l v e n t s  were necessary f o r  separa t i ng  water  i n s o l u b l e  

o rgan ic  species.  Several p o s s i b l e  advantages of  m i c e l l a r  m o b i l e  

phases were c i t e d  such as: ( a )  g r e a t e r  s a f e t y ,  because f l a m a b l e  

and/or  t o x i c  o rgan ic  s o l v e n t s  were n o t  needed; (b)  ease o f  

d i s p o s a l  s ince  most o f  t h e  s u r f a c t a n t s  used were b iodegradable;  

( c )  g r e a t e r  v e r s a t i l i t y ,  because one can add a v a r i e t y  o f  s a l t s  t o  

c o n t r o l  i o n i c  s t r e n g t h ,  pH, b u f f e r  c a p a c i t y ,  e t c .  w i t h o u t  r u n n i n g  

i n t o  s o l u b i l i t y  problems; ( d )  r e l a t i v e l y  l o w  c o s t s ;  and ( e )  
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242 ARMSTRONG 

g r e a t e r  s e l e c t i v i t y ,  because t h e  h i g h l y  s p e c i f i c  i n t e r a c t i o n  o f  a 

s o l u t e  w i t h  a m i c e l l e  (which u t i l i z e s  hydrophobic, e l e c t r o s t a t i c  

and i n t e r f a c i a l  s u r f a c e  i n t e r a c t i o n s )  cannot be d u p l i c a t e d  by  any 

t r a d i t i o n a l  pure o r  mixed s o l v e n t  system. 8,9,66-6 8 

Several c a t i o n i c ,  a n i o n i c  and non ion ic  m i c e l l e s  i n  aqueous 

s o l u t i o n  were t e s t e d  on a v a r i e t y  o f  p l a n a r  s t a t i o n a r y  phases t o  

see i f  they  produced v i a b l e  separa t i ons .  It was found t h a t  

m i c e l l a r  m o b i l e  phases  were n o t  c o m p a t i b l e  w i t h  p a p e r ,  

m i c r o c r y s t a l l  i n e  c e l l u l o s e  and s i l i c a  g e l  s t a t i o n a r y  

phases. 819966-68 Streaks w i t h  l i t t l e  o r  no s e p a r a t i o n  were 

produced on these media r a t h e r  than  compact, d i s c r e t e  spots .  

L ikewise,  n o n i o n i c  m i c e l l e s  tended t o  produce s t reaks ,  even on 

s t a t i o n a r y  phases t h a t  were compa t ib le  w i t h  i o n i c  m i c e l l e s .  The 

b e s t  r e s u l t s  were ob ta ined  w i t h  i o n i c  m i c e l l e s  (e.g. SDS, HTAC, 

HTAB, e t c . )  and polyamide s t a t i o n a r y  phases (produced by Brinkman 

o r  Baker) .8s9s66-68 Alumina and reversed phase suppor t s  were a1 so 

used w i t h  some success.899166-68 

It became apparent  from t h i s  work t h a t  one cou ld  n o t  o n l y  

a l t e r  t he  s e l e c t i v i t y  ( i .e . ,  t h e  a o r  s e p a r a t i o n  f a c t o r )  o f  

separa t i ons  b y  changing t h e  m i c e l l e  c o n c e n t r a t i o n  b u t  a1 so by  

changing the  n a t u r e  o f  t h e  aggregate (e.g., s u r f a c e  charge) .  T h i s  

i s  i l l u s t r a t e d  i n  F i g u r e  11, where analogous separa t i ons  o f  

benzamide, 2-naphthol and b ipheny l  on i d e n t i c a l  polyamide 

s t a t i o n a r y  phases produce chromatograms o f  v e r y  d i f f e r e n t  e l u t i o n  

o r d e r  and R f ' s .  The d i f f e r e n c e  i n  t h e  s e l e c t i v i t y  o f  t hese  two 

separa t i ons  i s  m a i n l y  due t o  the  d i f f e r e n t  charge o f  t h e  m i c e l l e s  
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MICELLES IN SEPARATIONS 2 4 3  

i 0.1M HTAC 0.1M SDS 

Figure 11 

Two TLC separa t ions  which i l l u s t r a t e  the e f f e c t  o f  a m i c e l l e ' s  
charge on sel  ec t iv  i t y .  Hexad ec yl t r  imethyl ammonium chl or  ide (HTAC) 
forms ca t ion ic  mice l les  and sodium dodecyl s u l f a t e  ( S D S )  forms 
anionic micelles.  The sol Utes 2-naphthol ( 2 - N )  , benzamide (Bza) 
and biphenyl ( B i )  were separated on identical  polyamide p la tes .  

in the mobile phase. While i t  i s  obvious t h a t  the charge of an 

ionic mice l le  will  have a subs tan t ia l  e f f e c t  on charged o r  

ionizable so lu t e s  i t  a l so  appears t h a t  mice l la r  charge can have a 

profound e f f e c t  on uncharged sol Utes. 4 4  Indeed, i t  has been 

suggested t h a t  while hydrophobic in t e rac t ions  a r e  necessary t o  

s o l u b i l i r e  a va r i e ty  o f  organic so lu t e s ,  t he  s e l e c t i v i t y  i s  

controlled by  e l e c t r o s t a t i c  and sur face  e f f e c t s  f o r  any molecule 

with a d ipole  or d ipole  moment.44 Spectroscopic s tud ie s  tend t o  

confirm t h i s  even f o r  r e l a t i v e l y  hydrophobic, nonpolar so lu t e s  

such a s  benzene. 43 

I t  was demonstrated t h a t  one could use mice l la r  TLC t o  obta in  

p a r t i t i o n  coe f f i c i en t s  and/or binding constants of sol Utes t o  
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244 ARMSTRONG 

m i ~ e l l e s . ~ ~  The t h e o r y  and mechanism were shown t o  be analogous 

t o  t h a t  f o r  HPLC. Furthermore, one c o u l d  s u b s t i t u t e  o t h e r  

compounds, such as c y c l o d e x t r i n s ,  f o r  t h e  m i c e l l a r  aggregate and 

ach ieve  analogous r e s u l t s  (see s e c t i o n  V I ) .  44 

Sherma and co-workers separated amino a c i d s  on a v a r i e t y  o f  

TLC p l a t e s  w i t h  seve ra l  d i f f e r e n t  s o l v e n t  s y ~ t e m s . ~ ’  They found 

t h a t  t h e r e  was no r e v e r s a l  i n  t h e  r e t e n t i o n  o f  most amino a c i d s  i n  

g o i n g  from normal t o  reversed phase TLC. R e t e n t i o n  r e v e r s a l s  were 

o n l y  o b s e r v e d  when m i c e l l a r  m o b i l e  phases  o r  s u r f a c t a n t  

impregnated s t a t i o n a r y  phases were used. T h i s  was though t  t o  b e  

due t o  an i o n  exchange m e ~ h a n i s m . ~ ’  These r e s u l t s  i n d i c a t e d  t h a t  

simp1 i f i e d  n o t i o n s  o f  “normal”  and “ reve rsed ”  phase chromatography 

were n o t  always a p p r o p r i a t e .  69 

Menger and D o l l  used m i c e l l a r  TLC t o  de te rm ine  p a r t i t i o n  

c o e f f i c i e n t s  o f  f a t t y  a c i d s  t o  SDS m i ~ e l l e s . ~ ’  The f a t t y  a c i d s  

cou ld  be v i s u a l i z e d  us ing  a d i l u t e  KMn04 spray r e a g e n t  a f t e r  

development on polyamide p l a t e s .  T h i s  i n f o r m a t i o n  was used i n  a 

more e x t e n s i v e  r e p o r t  on t h e  s t r u c t u r e  o f  t h e  m i c e l l e .  70 

Stahr  and Domoto used m i c e l l a r  s o l u t i o n s  t o  separate a 

v a r i e t y  o f  mycotox ins. ”  Concentrated s o l u t i o n s  o f  SDS were 

r e q u i r e d  f o r  development b u t  tended t o  deform t h e  bands. 

C y c l o d e x t r i n  m o b i l e  phases were used as w e l l ,  and appeared t o  

produce b e t t e r  separa t i ons  f o r  these compounds. 71 

The most e x t e n s i v e  use o f  reve rsed  m i c e l l a r  m o b i l e  phases has 

been i n  TLC (Table V ) .  Severa l  amino ac ids,  nuc leos ides  and 

q u i n o n e s  have  been  s e p a r a t e d  u s i n g  hexane s o l u t i o n s  o f  
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MICELLES IN SEPARATIONS 2 4 5  

d i o c t y l  su l  f osucc ina te  (DOSS) and wa te r .8a9s72  Because o f  t h e  

v i s c o s i t y  o f  t h e  s o l u t i o n ,  development t imes  can take  1 2  t o  48 

hours.  However, these separa t i ons  o f t e n  produce v e r y  sma l l  spo t  

s i z e s  and t h e r e f o r e  h i g h  r e s o l ~ t i o n . ~ , ~ ~ ~ ~ ~ ~ ~  Tab le  V summarizes 

many o f  t h e  separa t i ons  t h a t  have been done v i a  m i c e l l a r  TLC. 

Except i n  t h e  case o f  s low deve lop ing  reversed m i c e l l a r  systems, 

t h e  e f f i c i e n c y  o f  t h i s  technique ( a s  i n d i c a t e d  by  s p o t  s i z e )  

tended t o  b e  l e s s  than  t h a t  o f  more t r a d i t i o n a l  TLC methods. 

I n  a r e l a t e d  t e c h n i q u e ,  l e s s  v i s c o u s  s o l u t i o n s  o f  

microemuls ions can be used f o r  more r a p i d   separation^.^^ T h i s  

w i l l  be d iscussed i n  Sec t i on  V I .  

A s e r i e s  o f  TLC exper iments commonly used i n  o r g a n i c  teach ing  

l a b o r a t o r i e s  have been a l t e r e d  so t h a t  m i c e l l a r  m o b i l e  phases 

cou ld  be used.75 T h i s  a l l owed  the  e l i m i n a t i o n  o f  many p o t e n t i a l l y  

hazardous o r g a n i c  s o l v e n t s  from the  teach ing  l a b o r a t o r y .  The n e t  

r e s u l t  was t h a t  s tuden ts  cou ld  r u n  more separa t i ons  s a f e l y  and do  

them whenever t h e  need arose. 75 

The p o s s i b l e  a d v a n t a g e s  o f  m i c e l l a r  TLC h a v e  been  

d iscussed,  66-75 One should a l s o  be aware t h a t  t h e r e  a r e  some 

d isadvantages t o  t h i s  method. F i r s t ,  t h e r e  i s  a l i m i t e d  number o f  

s t a t i o n a r y  phases (e.g., polyamide and alumina) t h a t  can b e  used 

w i t h  t h i s  technique,  V i s u a l i z a t i o n  o f  t h e  s p o t s  can sometimes be 

more d i f f i c u l t  because o f  t h e  presence o f  t he  s u r f a c t a n t .  The 

c a p a c i t y  o f  a m i c e l l a r  m o b i l e  phase ( t o  d i s s o l v e  and c a r r y  a 

s o l u t e )  i s  g e n e r a l l y  l e s s  than  t h a t  o f  an o rgan ic  s o l v e n t .  

Consequently, one must be c a r e f u l  n o t  t o  spo t  t o o  much m a t e r i a l  
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TABLE V 

Planar  Separat ions Which U t i l i z e  M i c e l l a r  M o b i l e  Phases --- 
Compound 

S t a t i o n a r y  
Phasg Re f - Mobi le  Phasea - 

1. p e s t i c i d e s  (aq.) SDS o r  HTAB PA o r  A1 1 

2. p o l y c y c l i c  a romat i c  (aq.) SDS 
hydrocarbons 

PA 9 

3. amino a c i d s  (aq.) SDS o r  HTAC RP 69 

4. amino a c i d s  (non aq. rev.  RP 9 
m i c e l  l e )  DOSS 

m i c e l  l e )  DOSS 
5 .  nuc leos ides  (non aq. rev.  RP 8 

6. s u b s t i t u t e d  (aq.) SDS o r  HTAC PA, RP 67 
phenols, a n i l i n e s  
and benzoic  a c i d s  

7. s u b s t i t u t e d  (aq.) SDS 
naphtha1 enes 

PA 74 

8 .  food c o l o r s  (aq. )  SDS PA 75 

9. i n d i c a t o r s  (aq.) SDS PA 75 

10. c a f f e i n e  and (aq.) SDS o r  HTAC PA o r  A 1  75 
i m p u r i t i e s  

11. quinones (aq.) SDS o r  HTAC PA 72 

12. t h i o l s  (aq.) SDS o r  HTAC PA 72 

13. p h t h a l i m i d e s  (aq. ) SDS o r  HTAC PA 72 

14. mycotox ins (as.) SDS PA, A l ,  RP 71 

15. f a t t y  a c i d s  (aq.) SDS PA 70 

aThe a b b r e v i a t i o n s  i n  t h i s  column r e f e r  t o  t ype  o f  s u r f a c t a n t  
which makes up t h e  m i c e l l e  i n  t h e  mob i l  phase. Sodium dodecyl  
s u l f a t e  (SDS) , h e x a d e c y l  t r i m e t h y l a m m o n i u m  b r o m i d e  (HTAB) , 
h e x a d e c y l t r i m e t h y l a m m o n i u m  c h l o r i d e  (HTAC) ,  a n d  
d i o c t y l s u l  f o s u c c i n a t e  (DOSS) .  

bPolyamide (PA), a lumina ( A l ) ,  and reve rsed  phase (RP). 
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MICELLES IN SEPARATIONS 247 

which can cause s t r e a k i n g .  Aqueous m i c e l l a r  m o b i l e  phases 

sometimes produce more d i f f u s e  spo ts  than  d o  t r a d i t i o n a l  m o b i l e  

phases. 

C. L i q u i d  Chromatography 

To da te ,  more m i c e l l e  mediated separa t i ons  have been 

r e p o r t e d  by h i g h  performance 1 i q u i d  chromatography than  by  any 

o t h e r  technique,  A b r i e f  r e v i e w  o f  m i c e l l a r  o r  pseudophase l i q u i d  

chromatography ( i n  Japanese) was g i v e n  by  S a i t ~ h . ~ ~  The f i r s t  

example o f  a modern LC s e p a r a t i o n  t h a t  u t i l i z e d  m i c e l l a r  m o b i l e  

phases r a t h e r  than  o rgan ic  so l ven ts ,  demonstrated t h e  e f f e c t i v e  

r e s o l u t i o n  o f  n i n e  p h e n o l s  and two p o l y n u c l e a r  a r o m a t i c  

hydrocarbons on a CI8 reversed phase column ( F i g u r e  12).77 I t  was 

F i g u r e  1 2  

A C reversed phase LC s e p a r a t i o n  o f  e leven  compounds us ing  a 0.2 
M 41s (as)  m o b i l e  phase. A f l o w  g r a d i e n t  was used and i s  
i n d i c a t e d  by t h e  d o t t e d  l i n e .  The peaks a r e  as f o l l o w s :  1. 
p i c r i c  ac id ,  2. hydroquinone, 3. r e s o r c i n o l ,  4. c a t e c h o l ,  5 .  
phenol, 6. p -n i t ropheno l  , 7. o -c reso l  , 8. o - i s o p r o p y l  phenol, 9. 
o -n i t ropheno l ,  10. naphthalene, 11. anthracene. Repr in ted  w i t h  
pe rm iss ion  from r e f .  77. 
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248 ARMSTRONG 

shown t h a t  hydrophobic, a m p h i p h i l i c  and h y d r o p h i l  i c  mo lecu les  

c o u l d  be chromatographed a t  t h e  same t i m e  w i t h  i s o c r a t i c  

e l ~ t i o n . ~ ’  T h i s  was because t h e  m i c e l l e  cou ld  i n t e r a c t  w i t h  a 

s o l u t e  v i a  b o t h  hydrophobic and e l e c t r o s t a t i c  i n t e r a c t i o n s .  It was 

shown t h a t  v a r y i n g  t h e  m i c e l l e  c o n c e n t r a t i o n  i n  t h e  m o b i l e  phase 

a f f e c t s  t h e  r e l a t i v e  separa t i on  ( a )  o f  severa l  s o l u t e s  and t h a t  

sol Ute r e t e n t i o n  decreased when t h e  m i c e l l e  c o n c e n t r a t i o n  was 

increased.” The p o s s i b i l i t y  t h a t  m i c e l l a r  m o b i l e  phases m i g h t  

r e s u l t  i n  the improved d e t e c t i o n  o f  v a r i o u s  compounds was no ted  

f o r  t h e  f i r s t  t ime.77 Many o f  t h e  advantages o f  m i c e l l e s  noted 

f o r  p l a n a r  chromatography (e.g., s a f e t y ,  v e r s a t i l i t y ,  e t c . )  a l s o  

app l i ed  t o  LC. Likewise,  many o f  t h e  d isadvantages o f  m i c e l l a r  

m o b i l e  phases i n  TLC ( s e c t i o n  111-B) a l s o  a p p l i e d  t o  LC. 

S p e c i f i c a l l y  t h e  s o l u t i o n  c a p a c i t y  o f  t h e  m i c e l l a r  m o b i l e  phase i s  

g e n e r a l l y  ( b u t  n o t  always) l e s s  than  t h a t  o f  equal volumes o f  many 

o rgan ic  so l ven ts .  I n  p r e p a r a t i v e  LC one must separate t h e  f i n a l  

p roduc t  from the  s u r f a c t a n t  b y  e x t r a c t i o n ,  p r e c i p i t a t i o n  o r  some 

o t h e r  tec hn i que . 75 

A t  t h e  t i m e  t h e  f i r s t  r e p o r t s  c o n c e r n i n g  m i c e l l a r  

chromatography appeared, a number o f  researchers  were s tudy ing  t h e  

mechanism o f  i o n  i n t e r a c t i o n  chromatography i n  a1 coho1 -water  

m i x  t u r  es . 78-80 They noted t h a t  a t  h i g h e r  c o n c e n t r a t i o n s  o f  t h e  

i o n  i n t e r a c t i o n  reagen t  (IIR), wh ich  was o f t e n  a s u r f a c t a n t ,  a 

d e v i a t i o n  from expected b e h a v i o r  occured. P l o t s  o f  r e t e n t i o n  

versus c o n c e n t r a t i o n  o f  IIR produced p la teaus  o r  maxima, T h i s  was 

o f t e n  a t t r i b u t e d  t o  the  f o r m a t i o n  o f  m i c e l l e s  i n  t h e  m o b i l e  
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MICELLES IN SEPARATIONS 249 

phase . 79s80 I n  some cases models were fo rmu la ted  t o  i n c l u d e  

m i c e l l a r  and i o n  i n t e r a c t i o n  e f f e c t s .  Wh i le  s i m p l e  m i c e l l e  

fo rma t ion  was a c o n v i e n t  way t o  e x p l a i n  the  anomolous b e h a v i o r  o f  

t h i s  h i g h l y  u s e f u l  technique,  i t  i s  now apparent  t h a t  t h i s  i s  a 

h i g h l y  c a n p l i c a t e d  h y b r i d  system. M o b i l e  phase m o d i f i e r s  such a s  

methanol tend t o  a l t e r  and d i s r u p t  m i c e l l e  f o r m a t i o n  ( s e c t i o n  11). 

E x a c t l y  what  t y p e  o f  a g g r e g a t i o n a l  s t r u c t u r e s  e x i s t  i n  

su r fac tan t -me thano l  -water  m i x t u r e s  i s  s t  ill open t o  quest i on .  

Symmetrical i o n  i n t e r a c t i o n  r e a g e n t s  such as  te t rabu ty lammon iun  

c h l o r i d e  w i l l  n o t  form normal aqueous m i c e l l e s  b u t  w i l l  tend t o  

aggregate l i k e  reversed m i c e l l e s  i n  some o rgan ic  s o l v e n t s  o r  

s o l v e n t  m i x t u r e s  ( s e c t i o n  11-B). Added o rgan ic  a d d i t i v e s  and 

m o d i f i e r s  can p r o f o u n d l y  a f f e c t  t he  p a r t i t i o n i n g  and /o r  a d s o r p t i o n  

b e h a v i o r  o f  t h e  s t a t i o n a r y  phase and b u l k  s o l v e n t  t h rough  a 

v a r i e t y  o f  mec hani  sms. 

The e f f e c t  o f  smal l  t o  moderate a d d i t i o n s  o f  o r g a n i c  m o d i f i e r  

t o  a s u r f a c t a n t  c o n t a i n i n g  m o b i l e  phases was examined by Graham 

and Rogers.79 The e f f e c t  o f  s u r f a c t a n t s  be low and above the  CMC 

on  the r e t e n t i o n  o f  n o n i o n i c  s o l u t e s  on a reve rsed  phase column 

was d iscussed.  They a l s o  noted t h e  anomalous decrease i n  c a p a c i t y  

f a c t o r  a t  h i g h  s u r f a c t a n t  c o n c e n t r a t i o n s .  It was demonstarted 

t h a t  t h e  s u r f a c t a n t  adsorbed on t h e  s t a t i o n a r y  phase d i d  n o t  

s i g n i f i c a n t l y  a f f e c t  t h e  r e t e n t i o n  o f  more hydrophobic s o l u t e s  

such as benzene o r  to luene ,  b u t  d i d  a f f e c t  more h y d r o p h i l i c ,  p o l a r  

and/or  charged canpounds.79 I t was a l s o  shown t h a t  as  t h e  

c o n c e n t r a t i o n  o f  o r g a n i c  m o d i f i e r  was increased,  t h e  r o l e  o f  t h e  
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250 ARMSTRONG 

s u r f a c t a n t  became l e s s  impor tan t .  A s i m p l e  model o f  adsorbed 

s u r f a c t a n t  on t h e  s t a t i o n a r y  phase was used t o  e x p l a i n  many o f  

t hese  obse rva t i ons .  79 

In 1981 seve ra l  s i g n i f i c a n t  developnents occurred i n  m i c e l l a r  

LC. In a d d i t i o n  t o  the  s e p a r a t i o n  o f  a g r e a t e r  v a r i e t y  o f  

canpounds, t h e  three-phase model f o r  m i c e l l a r  o r  pseudophase LC 

was proposed and supported b y  t h e o r y  and experiment.81 The use o f  

m i c e l l a r  m o b i l e  phases f o r  enhanced f l uo rescence  and roan 

t e m p e r a t u r e  1 i q u i d  p h o s p h o r e s c e n c e  d e t e c t i o n  was 

demonstrated. 8 2 s 8 3  I t was shown t h a t  o t h e r  a d d i t i v e s  c o u l d  be 

added t o  water (such a s  c y c l o d e x t r i n s )  and produce chromatographic  

b e h a v i o r  analogous t o  t h a t  o f  m i c e l l a r  m o b i l e  phases. 66,67 It was 

demonstrated t h a t  t h e r e  were a t  l e a s t  t w o  e f f e c t s  which l e d  t o  

a l t e r e d  r e t e n t i o n  i n  m i c e l l a r  LC.81 The f i r s t  e f f e c t  was due t o  

a d s o r p t i o n  o f  s u r f a c t a n t  o n t o  the  s t a t i o n a r y  phase. T h i s  c o u l d  

a f f e c t  r e t e n t i o n  b y  i m p a r t i n g  on i o n  i n t e r a c t i o n  c a p a c i t y  t o  t h e  

s t a t i o n a r y  phase ( a s  d iscussed by o the r192s78-80 )  o r  by  c r e a t i n g  

canpet ing e q u i l i b r i a  between the  s u r f a c t a n t  and s o l u t e  f o r  

a d s o r p t i o n  s i tes.81 The second e f f e c t  was a s u b s t a n t i a l  decrease 

i n  s o l u t e  r e t e n t i o n  i n  the  presence o f  m i c e l l e s  as shown i n  F i g u r e  

13. M i c e l l a r  LC t h e o r y  was d e r i v e d  t o  e x p l a i n  and u t i l i z e  t h e  

second, g e n e r a l l y  more d r a n a t i c  o f  t hese  e f f e c t s .  81 

The three-phase model ( F i g u r e  1 4 )  al lowed a t h e o r e t i c a l  

d e s c r i p t i o n  o f  m i c e l l a r  LC.81 T h i s  and subsequent t rea tmen ts  a r e  

considered i n  s e c t i o n  111-0. The use fu l  t h i n g  about t h e  t h r e e  

phase model i s  t h a t  one cou ld  s u b s t i t u t e  another  pseudophase f o r  

the m i c e l l e  (such a s  a c y c l o d e x t r i n  o r  crown e t h e r )  w i t h o u t  
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01 1 

03 0 0 1  0 2  

[Sodium Dodecyl Sulfate], M 

Figure 13 

Plots  of LC capacity f ac to r  k '  v s  su r fac t an t  concentration. Data 
taken from reference  81. 

p, 0 
Bulk Solvent 7 0 phase 

/Stationary P h a s h  

Figure 1 4  

resenta t ion  of  the  or ig iona l  t h ree  phase model whic$fllowed a 
o re t i ca l  descr ip t ion  of mice l la r  o r  pseudophase LC. "P" is 

pa r t i t i on  coe f f i c i en t  o f  a so lu t e  between the  indicated 

? 
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2 5 2  ARMSTRONG 

a p p r e c i a b l y  chang ing t h e  model o r  t h e o r e t i c a l  equa t ions  ( s e c t i o n  

V I ) .  I n  a d d i t i o n ,  one cou ld  use e i t h e r  a p a r t i t i o n i n g  o r  b i n d i n g  

approach t o  o b t a i n  r e l a t e d  r e s u l t s ,  a s  was demonstrated i n  

m i c e l l a r  k i n e t i c  s t u d i e s  ( F i g u r e  1 5 ) .  84-86 One o f  t h e  u s e f u l  

aspects  o f  t h i s  work was t h a t  i t  a l lowed one t o  eva lua te ,  

chromatographica l  1 y, p a r t i  t i o n  c o e f f i c i e n t s  and /o r  b i n d i n g  

c o n s t a n t s  i n v o l v i n g  any o r  a l l  phases.81 I t  was a l s o  apparent  

t h a t  t h e  separa t i on  f a c t o r  changed w i t h  changing s u r f a c t a n t  

81 concen t ra t i on ,  as i t  had i n  TLC. 

There i s  a s i g n i f i c a n t  amount o f  exper imenta l  suppor t  f o r  t h e  

t h r e e  phase o r  pseudophase model o f  m i c e l l a r  LC. F i r s t  o f  a l l ,  

p l o t s  o f  r e t e n t i o n  d a t a  f i t  the  t h e o r e t i c a l  express ions ( s e c t i o n  

111-0) f o r  a v a r i e t y  o f  s o l u t e s  which b i n d  t o  m i c e l l e s .  

Fur thermore t h e  exper imenta l  v a l u e  o f  a s o l u t e  p a r t i t i o n  

c o e f f i c i e n t  o r  b i n d i n g  c o n s t a n t  i n v o l v i n g  o n l y  m i c e l l a r  and 

F i g u r e  15 

T y p i c a l  k i n e t i c  r e a c t i o n  models which u t i l i z e  b i n d i n g  c o n s t a n t s  
( K s )  r a t h e r  t h a n  r e l a t e d  p a r t i t i o n  c o e f f i c i e n t s .  R e l a t i o n s h i p  (c)  
i s  adapted from c l a s s i c  a d s o r p t i o n  chromatography. " S "  rep resen ts  
a so lu te ,  I 'M" t h e  M i c e l l e ,  ' ' A "  a s o l i d  sur face a d s o r p t i o n  s i t e ,  
"MS" a m i c e l l e - s o l u t e  complejl,,;l?,$4,af4,.$dsorbed s o l u t e  and " P ' l  i s  
t h e  r e a c t i o n  p roduc t  o f  "S". 
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aqueous "phases" was shown t o  b e  independent o f  t h e  s t a t i o n a r y  

phase and/or  chromatographic technique used. 44,81 Pel i z z e t t i  and 

co-workers l a t e r  demonstrated t h a t  m i c e l l a r  b i n d i n g  c o n s t a n t s  o r  

p a r t i t i o n  c o e f f i c i e n t s  determined b y  LC ( f o r  over  2 0  d i f f e r e n t  

canpounds) were i n  good agreement w i t h  those determined b y  o t h e r  

independent methods (e.9. s p e c t r a l  s h i f t ,  k i n e t i c  s tud ies ,  

s o l u b i l i t y  s t u d i e s ,  e t c . ) .  87,88 

One f a c t o r  t h a t  i s  f r e q u e n t l y  over looked i n  m i c e l l a r  LC i s  

t h a t  a number o f  assunp t ions  have been made i n  d e r i v i n g  

pseudophase r e t e n t i o n  equations.81 Fo r  example, i t  i s  assuned 

t h a t  canpounds t h a t  b i n d  t o  a m i c e l l e  w i l l  show decreased 

r e t e n t i o n  w i t h  i n c r e a s i n g  m i c e l l e  c o n c e n t r a t i o n  i n  the  m o b i l e  

phase, w h i l e  canpounds which d o  n o t  b i n d  t o  t h e  m i c e l l e  w i l l  show 

l i t t l e  change i n  re ten t i on .81  I t i s  f u r t h e r  assuned t h a t :  t h e  

m i c e l l e - s o l u t e  l 'canplex" i s  o f  1: 1 s t o i c h i o m e t r y ;  t h e  s t a t i o n a r y  

phase becanes sa tu ra ted  w i t h  s u r f a c t a n t  a t  o r  be low t h e  CMC ( o r  

t h a t  d i f f e r e n t  amounts o f  bound s u r f a c t a n t  d o  n o t  a p p r e c i a b l y  

a f f e c t  r e t e n t i o n ) ;  t h e  CMC, a g g r e g a t i o n  number and geometry  o f  t h e  

m i c e l l e  a r e  n o t  s i g n i f i c a n t 1  y a1 t e r e d  by  t h e  presence o f  t h e  

chromatographed so lu tes ;  t h e  aggrega t ion  number and geometry o f  

t h e  m i c e l l e  d o e s  n o t  change  w i t h  i n c r e a s i n g  s u r f a c t a n t  

c o n c e n t r a t i o n ;  and so on.81 I n  cases where these assunp t ions  a r e  

n o t  v a l i d ,  one can f i n d  d e v i a t i o n s  from expected behav io r .  As 

w i l l  be shown a t  t h e  end o f  t h i s  sec t i on ,  many o f  t hese  

" d e v i a t i o n s "  a r e  n o t  o n l y  i n t e r e s t i n g  b u t  a l s o  s c i e n t i f i c a l l y  

use fu l  . 
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S h o r t l y  a f t e r  t h e  i n i t i a l  work on t h e  three-phase model, 

S y b i l s k a  e t .  a l .  d e r i v e d  and e x p e r i m e n t a l l l y  v e r i f i e d  pseudophase 

r e t e n t i o n  equa t ions  f o r  s o l u t e s  t h a t  were weak t o  moderate 

s t r e n g t h  a c i d s  and bases. 89990 These equa t ions  (wh ich  w i l l  be 

d iscussed i n  s e c t i o n  111-0) take i n t o  account the  d i f f e r e n t  

b i n d i n g  o f  t h e  i o n i z e d  and un ion i zed  form o f  a s o l u t e  t o  t h e  

pseudophase. By i n c o r p o r a t i n g  acid-base e q u i l  i b r i a  i n t o  t h e  

pseudophase r e t e n t i o n  equa t ions  S y b i l  ska e t  a l .  c o u l d  p r e d i c t  t h e  

dependence o f  r e t e n t i o n ,  c a p a c i t y  f a c t o r s  and s e l e c t i v i t y  f a c t o r s  

on  b o t h  c o n c e n t r a t i o n  o f  t h e  pseudophase and pH. 89,90 Al though  

t h e s e  e q u a t i o n s  were o r i g i n a l l y  used f o r  a c y c l o d e x t r i n  

pseudophase t h e y  a r e  e s s e n t i a l l y  i d e n t i c a l  f o r  m i c e l l a r  m o b i l e  

phases ( s e c t i o n  111-0). 

De tec t i on :  It was o r i g i n a l l y  t h o u g h t  t h a t  m i c e l l a r  m o b i l e  

phases would have a b e n e f i c i a l  e f f e c t  on d e t e c t i o n  because these 

s o l u t i o n s  were r e l a t i v e 1  y i ncompress ib le  compared t o  o rgan ic  

s o l u t i o n s . 7 7  It soon b e c m e  apparent  t h a t  t h e r e  were a d d i t i o n a l  

b e n e f i t s  as w e l l .  It has been known f o r  some t i m e  t h a t  m i c e l l e s  

(as w e l l  as c y c l o d e x t r i n s )  cou ld  a l t e r  t h e  f l uo rescence  b e h a v i o r  

o f  a v a r i e t y  o f  compounds (e.9. b y  a l t e r i n g  quantun y i e l d s ,  

1 i f e t i m e s ,  e x c i t a t i o n  and e m i s s i o n  s p e c t r a ,  f l u o r e s c e n c e  

d e p o l a r i z a t i o n  and quenching e f f e c t s ) .  1 4 9 1 7  It was a l s o  

d i scove red  by  T u r r o  e t  al. ’ l  and Thomas and co-workers 48,92 t h a t  

t h e  m i c e l l e  c o u l d  s t a b i l i z e  t h e  t r i p l e t  s t a t e  o f  some molecules,  

t h e r b y  a1 l ow ing  room temperature 1 i q u i d  phosphorescence (RTLP). 

The m i c e l l e  a l s o  e f f e c t i v e l y  separated s o l u t e s  t h e r e b y  p r e v e n t i n g  
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MICELLES IN SEPARATIONS 255 

t r i p 1  e t - t r i p 1  e t  a n n i h i l a t i o n .  48*91-93 H i n z e  d i s c u s s e d  t h e  

a n a l y t i c a l  p o s s i b i l i t i e s  o f  a l l  o f  these  result^.'^,^^ S h o r t l y  

a f te rwards ,  t h e  b e n e f i t s  o f  m i c e l l a r  enhanced f l uo rescence  

d e t e c t i o n  was demonstrated f o r  a s e r i e s  o f  p o l  ynuc lea ra romat i c  

hydrocarbons (PAHs) . 82s83 I n  t h e  same r e p o r t  room temperature 

1 i q u i d  phosphorescence (RTLP) d e t e c t i o n  was f i r s t  demonstrated and 

severa l  o f  t h e  shor tcomings and d i f f i c u l t i e s  o f  t h e  techn ique  were 

mentioned. 82'83 F u r t h e r  work was done i n  RTLP d e t e c t i o n  b y  

Weinberger e t  a1 ., who s t u d i e d  the  e f f e c t s  o f  s u r f a c t a n t  

c o n c e n t r a t i o n ,  a d d i t i o n  o f  o r g a n i c  m o d i f i e r s  and postcolumn 

a d d i t i o n  o f  m i c e l l e s  on t he  phosphorescence I t  was 

i n d i c a t e d  t h a t  RTLP d e t e c t i o n  c o u l d  improve o n e ' s  s e l e c t i v i t y .  The 

d e t e c t i o n  l i m i t s  o f  some PAHs were found t o  b e  as l o w  a s  5 ng, 

94 w i t h  l i n e a r  dynamic ranges c o v e r i n g  t h r e e  o r d e r s  o f  magnitude. 

Vo-Dinh reviewed and evaluated much o f  t h e  work concern ing  

m i c e l l a r  e f f e c t s  on room temperature phosphorescence. 95 

A v a r i e t y  o f  nonchromatographic e l e c t r o a n a l y t i c a l  s t u d i e s  

have been done i n  m i c e l l a r  s o l u t i o n s .  M i  c e l l  es were 

shown t o  be u s e f u l  i n  the  vo l tammetry  o f  a v a r i e t y  o f  water  

i n s o l  ub l  e o r  weakly sol ub l  e compounds 96-109 and i n  s t a b i l i z i n g  

r a d i c a l  a n i o n s .  1 8 , 4 7  R e c e n t  s t u d i e s  have  shown t h a t  

LC-e lect rochemical  d e t e c t i o n  (LCEC) i s  more c o m p a t i b l e  w i th  

g r a d i e n t  m i c e l l a r  LC than  w i t h  t r a d i t i o n a l  aqueous-organic 

g r a d i e n t s .  Landy and Dorsey demonstrated t h e  m i c e l l a r  m o b i l e  

phases  a r e  u n i q u e l y  w e l l  s u i t e d  f o r  r e p e t i t i v e  g r a d i e n t  

analyses. 'lo T r a d i t i o n a l  g r a d i e n t  reversed phase LC ( w i t h  

' 7, 96-1 O9 
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256 ARMSTRONG 

aqueous-organic s o l v e n t  m i x t u r e s )  r e q u i r e s  a r e l a t i v e l y  l o n g  

r e - e q u i l  i b r a t i o n  p e r i o d  ( f o r  t h e  s t a t i o n a r y  phase) b e f o r e  t h e  

a n a l y s i s  can be repeated r e p r o d u c i b l y .  W i t h  i o n i c  m i c e l l a r  m o b i l e  

phases, t h e  s t a t i o n a r y  phase o f t e n  becomes quick1 y s a t u r a t e d  w i t h  

s u r f a c t a n t  a t  r e l a t i v e l y  l o w  m o b i l e  phase s u r f a c t a n t  

conces t r a t  i ons .  111*112 Above the  CMC t h e  s u r f a c t a n t  e x i s t s  a s  

m i c e l l e s  and a smal l ,  r e l a t i v e l y  cons tan t ,  c o n c e n t r a t i o n  o f  

monomers ( s e c t i o n  11-A). An inc rease  i n  s u r f a c t a n t  c o n c e n t r a t i o n  

( a s  i n  g r a d i e n t  e l u t i o n )  t e n d s  t o  i n c r e a s e  t h e  m i c e l l e  

c o n c e n t r a t i o n  b u t  does r e l a t i v e l y  l i t t l e  t o  t h e  monomer or 

s t a t i o n a r y  phase c o n c e n t r a t i o n s .  Consequent1 y, 1 i t t l  e column 

r e - e q u i l  i b r a t i o n  i s  needed f o r  r e p e t i t i v e  analyses, r e s u l t i n g  i n  a 

sav ings o f  t i m e  and so l ven t .  llo,lll I n  a d d i t i o n  the  a d s o r p t i o n  

i so the rm o f  SDS on reve rsed  phase packing was measured and t h e  

r o l e  o f  o r g a n i c  m o d i f i e r  on t h e  process was discussed.'" K h a l e d i  

and Dorsey eva lua ted  the  parameters a f f e c t i n g  base1 i n e  s h i f t s  i n  

g r a d i e n t  e l u t i o n  LCEC. l13 They s t u d i e d  t h e  s h i f t  i n  b a s e l i n e  

caused  b y  m i c e l l a r  c o n c e n t r a t i o n  g r a d i e n t s  a t  d i f f e r e n t  

p o t e n t i a l s ,  pHs and i o n i c  s t reng ths .  It was found t h a t  g r a d i e n t  

induced s h i f t s  cou ld  be g r e a t l y  reduced, p a r t i c u l a r l y  a t  h i g h  

p o t e n t i a l s ,  by  b a l a n c i n g  t h e  pH and conductance o f  two m i c e l l a r  

s o l u t i o n s .  113*114 It appears t h a t  t h e  g r e a t e r  c a n p a t a b i l i t y  o f  

m i c e l l a r  g r a d i e n t s  w i t h  e lec t rochemica l  d e t e c t o r s  i s  a s i g n i f i c a n t  

advantage over t r a d i t i o n a l  aqueous-organic m o b i l e  phases. 

M i c e l l a r  e f f e c t s  on UV-detect ion i n  LC have n o t  been 

adequate ly  considered.  However, t h e r e  a r e  nonchromatographic 
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MICELLES IN SEPARATIONS 257 

s t u d i e s  which i n d i c a t e  t h a t  m i c e l l e s  can a f f e c t  t h e  absorbance o f  

c e r  t a  i n  com po und s . 14,15,115,116 The i n t e r e s t e d  reader  i s  r e f e r r e d  

t o  these  a r t i c l e s  and t h e  r e f e r e n c e s  t h e r e i n .  

S e l e c t i v i t y  and e f f i c i e n c y  a r e  two parameters t h a t  have 

a1 ways been o f  paramount impor tance t o  the chromatographer. 

M i c e l l a r  m o b i l e  phases have been known from t h e  beg inn ing  t o  

produce unusual s e l e c t i v i t i e s  f o r  a v a r i e t y  o f  compounds as  a 

r e s u l t  o f  t h e i r  " m u l t i p l e  i n t e r a c t i o n  a b i l i t y "  ( s e c t i o n  111-B). 

Conversely, m i c e l l a r  m o b i l e  phases have o f f e r e d  l i t t l e  o r  no th ing  

f o r  improved chromatographic e f f i c i e n c y .  I n  f a c t ,  t h e  e f f i c i e n c y  

o f  an LC s e p a r a t i o n  i s  g e n e r a l l y  l e s s  when m i c e l l a r  m o b i l e  phases 

a r e  used, as compared t o  t r a d i t i o n a l  aqueous-organic s o l v e n t  

m i x t u r e s .  

S e l e c t i v i t y  i n  m i c e l l a r  LC i s  governed by t h e  same p r i n c i p l e s  

t h a t  were o u t l i n e d  f o r  p l a n a r  methods ( s e c t i o n  111-B). Yarmchuk, 

e t  a l .  examined t h e  r e t e n t i o n  b e h a v i o r  o f  seve ra l  s u b s t i t u t e d  

aromat ic  c m p o  und s . '17 They a l s o  found t h a t  s e l e c t i v i t y  f a c t o r s  

( a ' s )  v a r i e d  w i t h  s u r f a c t a n t  c o n c e n t r a t i o n  and charge. They 

conf i rmed ( f o r  HPLC) Maley and Guar ino ' s  r e p o r t 6 3  t h a t  m i c e l l a r  

m o b i l e  phases c o u l d  e f f e c t i v e l y  separa te  a c i d i c  ( a n i o n i c )  , b a s i c  

( c a t i o n i c ) ,  and n e u t r a l  compounds ( s e c t i o n  111-A); a s  w e l l  a s  

r e p o r t s  b y  a v a r i e t y  o f  o t h e r s  on t h e  i o n  i n t e r a c t i o n  r o l e  o f  

added sur fac  t a n  t s . 78-81 I t was a l s o  r e p o r t e d  t h a t  r e p u l s i o n  from 

a m i c e l l e  ( o f  a s i m i l a r l y  charged s o l u t e )  should n o t  a f f e c t  

r e t e n t i o n  and t h a t  nonpo la r  s o l u t e s  such a s  benzene and t o l u e n e  

should be a f f e c t e d  b y  hydrophobic  b u t  n o t  by  e l e c t r o s t a t i c  
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e f f e c t s .  P rev ious  and subsequent work has shown t h a t  

e l e c t r o s t a t i c  i n t e r a c t i o n s  can be as i m p o r t a n t  f o r  n o n i o n i z a b l e  

compounds as f o r  those t h a t  a r e  a b l e  t o  i o n i z e .  Indeed, i t  has 

l o n g  been known t h a t  any mo lecu le  w i t h  a d i p o l e  moment can b e  

profound 1 y a f f e c t e d  b y  e l  ec t r o  s t a t i c i n t e r a c  t i o n  s . 8 s  4 4  Ev en 

benzene has been shown t o  p r e f e r  i n t e r a c t i n g  w i t h  t h e  charge S t e r n  

l a y e r  o f  c a t i o n i c  m i c e l l e ~ . ~ ~  More r e c e n t l y  i t  has been 

demonstrated t h a t  t he  r e p u l s i o n  o f  a s o l u t e  from a r n i c e l l e  can 

r e s u l t  i n  v e r y  unusual s e l e c t i v i t i e s .  1189119 I n  f a c t ,  t h e  e l u t i o n  

b e h a v i o r  i s  o p p o s i t e  t o  t h a t  o f  p r e v i o u s l y  r e p o r t e d  m i c e l l a r  

separa t i ons  i n  t h a t  r e t e n t i o n  i nc reases  w i t h  i n c r e a s i n g  s u r f a c t a n t  

c o n c e n t r a t i o n  ( F i g u r e  16) .  T h i s  b e h a v i o r  i s  observed when one 

u t i l i z e s  s t a t i o n a r y  phases which d o  n o t  adsorb l a r g e  q u a n t i t i e s  o f  

s u r f a c t a n t  (e.g., p r o p y l  n i t r i l e  o r  C1 packings)  and i s  t hough t  t o  

r e s u l t  from an excluded volume e f f e c t .  1189119 E s s e n t i a l l y ,  a 

s o l u t e  i s  f o rced  onto t h e  s t a t i o n a r y  phase when i t  i s  exc luded 

from t h e  m o b i l e  phase by  t h e  m i c e l l e  and i t s  doub le  l a y e r .  I t  i s  

apparent  t h a t  i n  t h i s  s i t u a t i o n ,  some o f  t h e  s i m p l i f y i n g  

a s s u m p t i o n s  used i n  t h e  v a r i o u s  pseudophase r e t e n t i o n  

models81,89s90 a r e  v i o l a t e d .  T h i s  becomes even more apparent  when 

p l o t t i n g  r e t e n t i o n  d a t a  acco rd ing  t o  the  model equat ions.  L i n e s  

o f  n e g a t i v e  s lope  a r e  produced g i v i n g  t h e o r e t i c a l l y  meaningless 

n e g a t i v e  I' c oe f f i c i en t s . I' 1189119. These " c o e f f i c i e n t s "  may s t i l l  

be u s e f u l ,  however, s i n c e  i n  some cases t h e y  can be c o r r e l a t e d  t o  

t h e  degree o f  e l e c t r o s t a t i c  r e p u l s i o n  between a s o l u t e  and 

m i c e l l e .  T h i s  phenomena i s  v e r y  u s e f u l  i n  terms o f  s e l e c t i v i t y ,  
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A 

0 4 8 
ve, ml 

12 

0 4 8 
Ve, ml  

12 

F i g u r e  1 6  

A c o m p a r i s o n  o f  t h e  LC r e t e n t i o n  b e h a v i o r  o f  sodium 
n i t r o f e r r i c y a n i d e  (l), n a p h t h o l - 6 - s u l f o n i c  a c i d  (Z), and sodium 
naph tha lenesu l fona te  ( 3 ) ,  when e l u t e d  w i t h  a 0.025 M SDS m o b i l e  
phase ( A )  and w i t h  a 0.4 M SOS m o b i l e  phase ( 6 )  on a 30 cm 
p r o p y l n i t r i l e  column. Note t h a t  t h e  r e t e n t i o n  o f  a l l  compounds 
inc reases  when t h e  m i c e l l e  c o n t e n t  o f  t h e  m o b i l e  phase i s  
i n c r e a s e d .  T h i s  i s  t h e  o p p o s i t e  o f  n o r m a l l y  r e p o r t e d  
chromatographic  behav io r .  Repr in ted  w i t h  pe rm iss ion  f rom r e f .  
118. 

because i n c r e a s i n g  t h e  m i c e l l e  c o n t e n t  o f  t h e  m o b i l e  phase can 

cause decreased r e t e n t i o n  o f  some peaks and inc reased  r e t e n t i o n  o f  

o t h e r s .  119 

Dorsey, e t  a l .  f i r s t  s t u d i e d  e f f i c i e n c y  enhancement i n  

m i c e l l a r  LC. lZo  Bo th  t h e  causes and remedies f o r  l ower  e f f i c i e n c y  
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i n  m i c e l l a r  mediated separa t i ons  were considered.  It was though t  

t h a t  t h e  l a c k  o f  e f f i c i e n c y  was due t o  poor mass t r a n s f e r  from t h e  

m i c e l l e  t o  s t a t i o n a r y  phase. lZo A d d i t i o n  o f  l o w  c o n c e n t r a t i o n s  o f  

o rgan ic  m o d i f i e r s  and h i g h e r  temperatures tended t o  enhance 

separa t i on  e f f i c i e n c y  and r e t u r n  peak shapes t o  normal l e v e l s .  

T h i s  was thought  t o  r e s u l t  from b e t t e r  w e t t i n g  o f  t h e  s t a t i o n a r y  

phase b y  t h e  m o d i f i e r  and a temperature induced l o w e r i n g  o f  t h e  

v i s c o s i t y  o f  t h e  m o b i l e  phase. lZo I t  i s  apparent  t h a t  t h i s  i s  a 

v e r y  complex h y b r i d  system i n  which t h e  o r g a n i c  m o d i f i e r  can 

i nc rease  p a r t i t i o n i n g  t o  t h e  b u l k  n o n m i c e l l a r  s o l v e n t ,  m o d i f y  

s t a t i o n a r y  phase s u r f a c e  i n t e r a c t i o n s  and a1 t e r  t h e  m i c e l l e  

s t r u c t u r e .  Yarmchuk, e t  a . a l s o  considered mass t r a n s f e r  e f f e c t s  

on t h e  e f f i c i e n c y  o f  m i  e l l a r  LC. They though t  t h a t  t h e  

problem w i t h  mass t r a n s f e r  was a consequence o f  b o t h  slow m i c e l l a r  

e x i t  r a t e s  and slow d e s o r p t i o n  from t h e  s t a t i o n a r y  phase. lZ1 The 

p l a t e  h e i g h t ,  H, was shown t o  i nc rease  w i t h  i n c r e a s i n g  s u r f a c t a n t  

concen t ra t i on .  They a l s o  surmised, as  had Graham and Rogers, 69 

t h a t  t h e  main e f f e c t  o f  added o rgan ic  m o d i f i e r  was t o  l essen  t h e  

r o l e  o f  t h e  added s u r f a c t a n t ,  t he reby  p roduc ing  a system c l o s e r  t o  

t r a d i t i o n a l  reversed phase chromatography. I t was concluded t h a t  

one should improve mass t r a n s f e r  by  i n c r e a s i n g  temperature,  

reduc ing  1 i n e a r  v e l o c i t y  and keeping t h e  mice1 l e  c o n c e n t r a t i o n  

somewhat l ower .  ''' I n  a r e c e n t  s tudy,  t h e  d i f f u s i o n  c o e f f i c i e n t s  

and p l a t e  h e i g h t s  o f  seve ra l  s o l u t e s  were measured i n  t h e  presence 

and absence o f  m i c e l l e s .  lZ2 Some o f  t h e  s o l u t e s  were known t o  

b i n d  s t r o n g l y  t o  t h e  m i c e l l e  w h i l e  o t h e r s  were s t r o n g l y  r e p e l l e d  
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MICELLES IN SEPARATIONS 261 

evidence t h a t  n o n i o n i c  s u r f a c t a n t s  c o n t  

s t a t i o n a r y  phase i n  s i g n i f i c a n t  amounts 

t h e  CMC. T h i s  i s  i n  c o n t r a s t  t o  what 
..I- 

from t h e  m i c e l l e .  The d i f f u s i o n  c o e f f i c i e n t s  o f  s t r o n g l y  b i n d i n g  

s o l u t e s  approached t h a t  o f  t h e  m i c e l l e ,  which i s  app rox ima te l y  t e n  

t imes  l e s s  than  t h a t  o f  a smal l  s o l u t e .  122 S o l u t e s  t h a t  d i d  n o t  

b i n d  t o  t h e  m i c e l l e  had much h i g h e r  d i f f u s i o n  c o e f f i c i e n t s .  

I n t e r e s t i n g l y ,  b o t h  t y p e s  o f  s o l u t e s  (bound and r e p e l l e d )  showed 

decreased e f f i c i e n c y  i n  m i c e l l a r  LC. T h i s  i n d i c a t e d  t h a t  mass 

t r a n s f e r  from t h e  s t a t i o n a r y  phase played a m a j o r  r o l e  i n  t h e  

decreased e f f i c i e n c y  o f  m i c e l l a r  LC. 122 

B o r g e r d i n g  and H i n z e  e v a l u a t e d  B r i j - 3 5  ( a  n o n i o n i c  

s u r f a c t a n t )  m i c e l l a r  m o b i l e  phases f o r  t h e  reve rsed  phase LC 

s e p a r a t i o n  o f  a romat i c  a l c o h o l s ,  aldehydes, ketones and e s t e r s ;  as  

w e l l  as tobacco A l though  e l u t i o n  seemed t o  f o l l o w  

t h e  b a s i c  pseudophase r e t e n t i o n  expression," t h e r e  was some 

nue t o  adsorb on to  t h e  

a t  c o n c e n t r a t i o n s  above 

was r e p o r t e d  f o r  i o n i c  

s u r f a c t a n t s  b y  Hung and TaylorllL and Dorsey, e t  a 1 . , l l 1  and cou ld  

p o s s i b l y  have an e f f e c t  on a s o l u t e ' s  p a r t i t i o n  c o e f f i c i e n t  o r  

b i n d i n g  cons tan t  t o  t h e  s t a t i o n a r y  phase. They a l s o  r e p o r t e d  t h a t  

a d d i t i o n  o f  sma l l  amounts o f  e thano l  o r  propanol (0-15%) t o  t h e  

123 m o b i l e  phase d i d  n o t  improve chromatographic e f f i c i e n c y .  

Indeed, w i t h  15% added e thano l ,  a decrease i n  e f f i c i e n c y  was 

observed which seemed t o  r e s u l t  f rom t h e  increased v i s c o s i t y  o f  

t h e  s o l u t i o n .  123 These and o t h e r  exper iments ( i n v o l v i n g  t h e  

l o a d i n g  and s t r i p p i n g  o f  B r i j - 3 5  from t h e  s t a t i o n a r y  phase) 

seemed t o  i n d i c a t e  t h a t  t h e  ma jo r  cause o f  i n e f f i c i e n c y  i s  due t o  

s t a t i o n a r y  phase mass t r a n s f e r .  123 
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262 ARMSTRONG 

Podcasy and Weber s tud ied  s e l e c t i v i t y  i n  m i c e l l a r  LC u s i n g  

t h e  z w i t t e r i o n i c  s u r f a c t a n t  dodecy ld ime thy l  ammonium propane 

s u l  f ona te  ( s u l  f 0 b e t a i n e - 1 2 ) . ~ * ~  M i c e l l a r  s e l e c t i v i t y  v a l u e s  (a 's )  

were canpared t o  those ob ta ined  w i t h  a t r a d i t i o n a l  n o r m i c e l l a r  

m o b i l e  phase c o n s i s t i n g  o f  50:50, methanol :water. It was 

demonstrated t h a t  halogenated benzenes had a s i g n i f i c a n t 1  y g r e a t e r  

s e l e c t i v i t y  f o r  t h e  m i c e l l a r  m o b i l e  phase. Furthermore, t h e  o r d e r  

o f  s e l e c t i v i t y  was: iodobenzene > bromobenzene > chlorobenzene. 

However, t h e  s e l e c t i v i t y  o f  t h e  m i c e l l a r  m o b i l e  phase f o r  

s u b s t i t u t e d  benzenes w i t h  p o l a r  s u b s t i t u e n t s  was n o t  s i g n i f i c a n t l y  

g r e a t e r  t han  t h a t  o f  t h e  methano1:water m o b i l e  phase. I t was 

demonstrated t h a t  t h e  s e l e c t i v i t y  o f  t h e  m i c e l l a r  system tended t o  

decrease as t h e  c o n c e n t r a t i o n  o f  s u r f a c t a n t  increased.  The reason 

f o r  t h i s  was though t  t o  be t h a t  t h e  d i f f e r e n c e  i n  p o l a r i t y  between 

t h e  s t a t i o n a r y  phase and m o b i l e  phase tended t o  decrease as  

s u l f o b e t a i n e - 1 2  i s  added t o  t h e  m o b i l e  phase. 124 

K i r kman lZ5  and Kirkman, e t  a1 .1269127 s t u d i e d  t h e  separa t i on  

o f  i o n i c ,  n e u t r a l ,  c h e l a t e d  and o rganometa l l i c  me ta l  spec ies us ing  

a v a r i e t y  o f  m i c e l l a r  m o b i l e  phases and c o n d i t i o n s .  Because o f  

t h e  magnitude o f  t h i s  i n v e s t i g a t i o n  o n l y  t h e  h i g h l i g h t s  can be 

presented here. The i n t e r e s t e d  reader  i s  s t r o n g l y  r e f e r r e d  t o  t h e  

o r i g i o n a l  r e f e r e n c e s  f o r  f u r t h e r  d e t a i l s  o f  t h i s  impress i ve  work. 

A v a r i e t y  o f  d i f f e r e n t  s u r f a c t a n t  m i c e l l e s  and bonded s t a t i o n a r y  

phases were u t i l i z e d .  I t  was found t h a t  m i c e l l a r  LC cou ld  be used 

f o r  separa t i ons  t h a t  a r e  commonly accanpl ished by i o n  exchange, 

normal phase and/or  reversed phase LC, b y  s i m p l y  s e l e c t i n g  an 
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MICELLES IN SEPARATIONS 

a p p r o p r i a t e  c a n b i n a t i o n  o f  s u r f a c t a n t  t ype  and bonded pack ing 

M i c e l l a r  LC was used t o  separa te  b o t h  hydrophobic  and hydroph 

263 

1 2 5  

1 i c  

compounds i n  a s i n g l e  d e t e r m i n a t i o n .  Kirkman and co-workers were 

t h e  f i r s t  t o  use plasma emiss ion d e t e c t i o n  w i t h  m i c e l l a r  

LC.125-127 I t  was found t h a t  t h e r e  was a s u r f a c t a n t  induced 

enhancement o f  t h e  emiss ion  s i g n a l  i n  some cases and t h e  mechanism 

o f  t h i s  enhancement was i n v e s t i g a t e d .  Bo th  t h e  s e p a r a t i o n  and 

s p e c i a t i o n  o f  a v a r i e t y  o f  a n a l y t e s  were done v i a  t h i s  technique.  

M i c e l l a r  LC was used t o  f u l l y  r e s o l v e  cis and f a c i a l  isomers 

o f  c o b a l t ( I I 1 )  i m i n o d i a c e t a t e  anions. lZ7 I n  a d d i t i o n  t h e  

s e p a r a t i o n  o f  t h e r m a l l y  l a b i l e  i s o m e r s  o f  a l u m i n i u m  

t r i f l  u o r o a c e t y l a c e t o n a t e s  was accompl  i s h e d  a t  O'C. 

S o l u t e - m i c e l l e  i n t e r a c t i o n s  were  i n v e s t i g a t e d  u s i n g  h i g h  

r e s o l u t i o n  Four i e r -T rans fo rm NMR. 125y126 F i n a l l y ,  t h e  e f f i c i e n c y  

o f  m i c e l l a r  LC was i n v e s t i g a t e d  and canpared t o  conven t iona l  

reversed phase LC. 

1 2 5 - 1 2 7  

1 2 5  

M u l l i n s  and K i r k b r i g h t  found t h a t  m i c e l l a r  s o l u t i o n s  o f  HTAC 

cou ld  be use fu l  i n  i o n  chromatography. 128 They success fu l  1 y 

separated i oda te ,  n i t r i t e ,  bromide, n i t r a t e  and i o d i d e .  The 

e f f e c t  o f  s u r f a c t a n t  c o n c e n t r a t i o n  and smal l  amounts o f  o r g a n i c  

m o d i f i e r  were a l s o  i n v e s t i g a t e d .  lZ8 It was found t h a t  t he  

separa t i on  fo l lowed the  t h r e e  phase e q u i l  i b r i u m  theo ry  proposed b y  

Armstrong and Nome.81 D e t e c t i o n  l i m i t s  ( U V  a t  205 nm) ranged 

between 4 and 20  mg. An a n a l y s i s  o f  d m e s t i c  t a p  water f o r  

n i t r a t e  and n i t r i t e  was a l s o  There have been 

o t h e r  r e p o r t s  on the use o f  s u r f a c t a n t  s o l u t i o n s  f o r  t he  
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264 ARMSTRONG 

s e p a r a t i o n  o f  i o n s  i n  which t h e  s u r f a c t a n t  c o n c e n t r a t i o n  was 

s u f f i c i e n t l y  h i g h  f o r  m i c e l l a r  aggregates t o  be p r e s e n t  ( a l t h o u g h  

129,130 smal l  amounts o f  o r g a n i c  m o d i f i e r s  were a l s o  p r e s e n t ) .  

However, t h e  p o s s i b i l i t y  t h a t  an aggrega t iona l  s t r u c t u r e  c o u l d  be 

c o n t r i b u t i n g  t o  the  s e p a r a t i o n  o f  i o n s  was n o t  recognized o r  

e ~ p l o i t e d . ' ~ ~ * ~ ~ ~  K i r k b r i g h t  and M u l l  i n s  a1 so r e p o r t e d  t h e  

s e p a r a t i o n  o f  f i v e  d i t h i o c a r b a m a t e s  i n c l u d i n g  

N-methy l  d i t h i o c a r b a m a t e  ( a n  i n s e c t i c i d e )  and d i s o d  ium 

ethy leneb isd i th iocarbamate  w i t h  HTAB m i c e l l a r  m o b i l e  phases.13' 

The e f f e c t  o f  i o n i c  s t r e n g t h ,  s u r f a c t a n t  c o n c e n t r a t i o n  and added 

o rgan ic  m o d i f i e r  were considered,  Many o f  t hese  s e p a r a t i o n s  were 

c a r r i e d  ou t  w i t h  h y b r i d  aqueous -o rgan ic -su r fac tan t  s o l u t i o n s  i n  

which t h e  r o l e  and i n t e g r i t y  o f  t h e  m i c e l l e  i s  n o t  e n t i r e l y  

c l e a r .  131 

B a r f o r d  and S l i w i n s k i  s t u d i e d  t h e  LC s e p a r a t i o n  o f  t w e l v e  

p r o t e i n s  w i t h  b u f f e r e d  (pH 7) m i c e l l a r  m o b i l e  phases.132 U n l i k e  

sma l l  so l  Utes, p r o t e i n s  seemed t o  undergo an a lmost  exponen t ia l  

change i n  r e t e n t i o n  f o r  a g i v e n  change i n  m i c e l l e  

c o n c e n t r a t i o n .  13' They found t h a t  p r o t e i n s  cou ld  be e l u t e d  near  

p h y s i o l o g i c a l  pH us ing  non ion ic  m i c e l l a r  s o l u t i o n  b u t  n o t  w i th  

conven t iona l  a l c o h o l i c  b u f f e r s .  The p r o t e i n s  were c l a s s i f i e d  b y  

t h e i r  e l u t i o n  b e h a v i o r  as low, i n t e r m e d i a t e  and h i g h  r e t e n t i o n  

species.  L i t t l e  o r  no c o r r e l a t i o n  was found between p r o t e i n  

r e t e n t i o n  and m o l e c u l a r  weight ,  average h y d r o p h o b i c i t y  o r  s u r f a c e  

charge. 13' C l e a r l y ,  a d d i t i o n a l  research  i s  warranted on t h i s  

i n t e r e s t i n g  and p o t e n t i a l l y  u s e f u l  technique.  
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MICELLES IN SEPARATIONS 2 6 5  

Arunyanar t  and C1 i n e  Love have modeled t h e  pseudophase 

r e t e n t i o n  equa t ion  i n  t h e  form o f  b i n d i n g  cons tan ts  and c a p a c i t y  

f a c t o r s ,  r a t h e r  t h a n  p a r t i t i o n  c o e f f i c i e n t s  and e l u t i o n  

volumes.133 T h i s  work was analogous t o  Uekama, e t  a1.134 e a r l i e r  

t rea tmen t  f o r  c y c l o d e x t r i n  m o b i l e  phases. The r e l a t i o n s h i p  o f  

these r e l a t e d  approaches i s  d iscussed i n  the  t h e o r y  s e c t i o n ,  

111-0. Other r e c e n t  work ( s e c t i o n  111-0, Tables VI and VII) has 

demonstrated t h a t  t h e  b a s i c  pseudophase r e t e n t i o n  equa t ion  can b e  

s i m i l a r l y  re-expressed i n  a t  l e a s t  39 r e l a t e d  forms (which 

i n c l u d e s  LC, TLC, and GPC). A l though o b t a i n i n g  one form from 

another  i s  m a t h e m a t i c a l l y  t r i v i a l ;  t h e r e  a r e  c e r t a i n  s t a t i s t i c a l  

and o t h e r  advantages i n  us ing  d i f f e r e n t  v a r i a t i o n s .  T h i s  w i l l  be 

more f u l l y  d iscussed i n  s e c t i o n  111-0 on theo ry .  

M o r i  s t u d i e d  t h e  r e t e n t i o n  b e h a v i o r  o f  seve ra l  catecholamines 

135 i n  c a t i o n  exchange chromatography w i t h  m i c e l l a r  m o b i l e  phases. 

He found i t  t o  be an e f f e c t i v e  technique which seemed t o  f o l l o w  

t h e  t r a d i t i o n a l  pseudophase r e t e n t i o n  equat ions.  135 

One aspect  o f  m i c e l l a r  LC t h a t  h a s n ' t  been e x t e n s i v e l y  

exp lo red  i s  t h a t  o f  i t s  " s o l v e n t  s t r e n g t h " .  Dorsey e t  a l .  111 

b r i e f l y  cons idered t h e  " s o l v e n t  s t r e n g t h "  o f  0.1 M SDS and CTAB. 

Both were found t o  be weaker reve rsed  phase e l u e n t s  than  

methanol :water ( 4 : l ) .  I t  was noted t h a t  s h o r t e r  r e t e n t i o n  t imes  

cou ld  be achieved by  u s i n g  h i g h e r  s u r f a c t a n t  c o n c e n t r a t i o n s ,  

g r a d i e n t s  and s h o r t e r  c h a i n  l e n g t h  bonded s t a t i o n a r y  phases. 111 

The a p p l i c a b i l i t y  o f  m i c e l l a r  m o b i l e  phases i s  o b v i o u s l y  

growing. The advantages and l i m i t a t i o n s  o f  t h i s  techn ique  a r e  
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266 ARMSTRONG 

TABLE V I  

Re-Expressions o f  t h e  Pseudophase LC R e t e n t i o n  -- 

VS 

(19) 

(continued) 
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MICELLES IN SEPARATIONS 267 

TABLE V I . ,  Continued 

Note t h a t  t hese  equa t ions  can n o t  o n l y  be used f o r  m i c e l l e  a 

fo rm ing  a d d i t i v e s  b u t  f o r  o t h e r  species such as c y c l o d e x t r i n s ,  
crown e the rs ,  cryptands,  e t c .  (11). 

bV i s  t h e  volume o f  t h e  s t a t i o n a r y  phase, V, i s  t h e  volume o f  
m o 8 i l e  phase, Ve i s  t h e  e l u t i o n  volume o f  a so lu te ,  tr i s  t h e  
r e t e n t i o n  t i m e  o f  a s o l u t e ,  t i s  t h e  r e t e n t i o n  t i m e  o f  an 
un re ta ined  s o l u t e ,  k '  i s  t h e  capa? i t y  f a c t o r ,  P i s  t h e  p a r t i t i o n  
c o e f f i c i e n t  o f  a s o l u t e  between t h e  m i c e l l e  anJwwater, P i s  t h e  
p a r t i t i o n  c o e f f i c i e n t  o f  a s o l  Ute between t h e  s t a t i o n a r y  $#as, and 
water .  K, i s  t h e  b i n d i n g  c o n s t a n t  o f  a s o l u t e  (aq)  t o  a m i c e l l e  
(aq) ,  Ks i s  t h e  b i n d i n g  c o n s t a n t  o f  a s o l u t e  (aq)  t o  t h e  
s t a t i o n a r y  phase (aq), v i s  t h e  p a r t i a l  s p e c i f i c  volume o f  t h e  
s u r f a c t a n t  i n  t h e  m i c e l l e ,  V i s  t h e  mo la r  volume o f  t h e  
s u r f a c t a n t ,  0 i s  t h e  phase r a t i o ,  F i s  t h e  volume f l o w  r a t e  o f  t h e  
m o b i l e  phase, [ A ]  i s  t h e  c o n c e n t r a t i o n  o f  s t a t i o n a r y  phase b i n d i n g  
s i t e s ,  C i s  t h e  c o n c e n t r a t i o n  o f  s u r f a c t a n t  i n  t h e  m i c e l l e  i n  g/ml 
and [ M I  can e i t h e r  be t h e  c o n c e n t r a t i o n  o f  s u r f a c t a n t  o r  m i c e l l e s  
i n  t h e  m o b i l e  phase i n  m o l e s / l i t e r .  

becoming more apparent  w i t h  t ime .  The b a s i c  mechanism o f  

s e p a r a t i o n  i s  f a i r l y  w e l l  understood i n  some cases and t h e r e  i s  a 

reasonable t h e o r e t i c a l  f ounda t ion  ( s e c t i o n  111-D) on which t o  

b u i l d .  T h i s  i s  n o t  t o  say t h a t  e v e r y t h i n g  i s  c l e a r  c u t .  There i s  

a h e a l t h y  c o n t r o v e r s y  ove r  severa l  aspects  o f  m i c e l l a r  LC. The 
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268 ARMSTRONG 

TABLE V I I  

a , b -  
- - 

Re-Expressions o f  t h e  Pseudophase TLC R e t e n t i o n  Equa t ion  

V ( P m w  - 1 )  1 

psw psw 

- c +- 
R f  

1 - R f  

1 - [ M I  + -- Km R f  -- - -- 
1 - R f  Ks [ A ]  02 Ks C A I  a2 

aThese equa t ion  can a l s o  be used f o r  n o n m i c e l l a r  a d d i t i v e s .  

b A l l  symbols a r e  as d e f i n e d  i n  Table V I .  

cause o f  l ower  e f f i c i e n c y  seems t o  be m a i n l y  a s t a t i o n a r y  phase 

mass t r a n s f e r  problem, b u t  t h e  m o b i l e  phase may s t i l l  b e  

i m p l i c a t e d  i n  some cases. There i s  some q u e s t i o n  as t o  t h e  r o l e  

and use fu lness  o f  smal l  amounts o f  o r g a n i c  m o d i f i e r .  The p o s s i b l e  

r o l e  o f  su r face  o r  i n t e r f a c i a l  t e n s i o n  needs t o  be examined i n  

some cases. 136s137 C l e a r l y ,  some o f  these d i f f e r e n c e s  r e s u l t  from 

t h e  f a c t  t h a t  d i f f e r e n t  m i c e l l a r  systems and s o l u t e s  a r e  b e i n g  

examined. There can b e  s i g n i f i c a n t  d i f f e r e n c e s  between n o n i o n i c  

and i o n i c  m i c e l l e s  as  w e l l  as between d i f f e r e n t  i o n i c  aggregates 

(see s e c t i o n  11-A). Furthermore, c o n t r o v e r s y  on t h e  s t r u c t u r e  and 

physicochemical p r o p e r t i e s  o f  m i c e l l e s  i s  bound t o  a f f e c t  t h e  

separa t i ons  f i e l d  as w e l l .  A l l  o f  t h e  t h e o r e t i c a l  models f o r  

pseudophase LC r e q u i r e  severa l  simp1 i f y i n g  assumptions. I n  some 
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MICELLES IN SEPARATIONS 269  

cases these assumptins a r e  n o t  j u s t i f i e d  and a d e v i a t i o n  from 

"normal" e l u t i o n  b e h a v i o r  i s  seen. T y p i c a l  examples o f  t h i s  

i n c l u d e  increased r e t e n t i o n  a t  h i g h e r  m i c e l l e  c o n c e n t r a t i o n s  f o r  

r e p e l l e d  o r  excluded v a r i a t i o n s  i n  r e t e n t i o n  due 

t o  v a r i a b l e  (e.g., non-Langmuir) a d s o r p t i o n  o f  s u r f a c t a n t  on t h e  

s t a t i o n a r y  phase,123 and t h e  unusual r e l a t i o n s h i p  between p r o t e i n  

c a p a c i t y  f a c t o r s  and s u r f a c t a n t  c ~ n c e n t r a t i o n . ' ~ ~  A s  w i l l  be seen 

i n  t h e  f o l l o w i n g  sec t i on ,  t h e r e  a r e  reasonable e x p l a n a t i o n s  f o r  

sane o f  t hese  d e v i a t i o n s .  

0. Theory 

Pseudophase o r  M i c e l l a r  L C ' s  t h e o r e t i c a l  o r i g i n s  extend 

back t o  t h e  o r i g i n a l  work o f  M a r t i n  and S ~ n g e , * ~ ~  i n  which t h e  

d r i v i n g  f o r c e  f o r  s e p a r a t i o n  was considered t o  be t h e  e q u i l i b r i u m  

d i s t r i b u t i o n  o f  a s o l u t e  between two phases. Even though t h i s  

model  a l l o w s  one t o  d r a w  r e a s o n a b l e  c o n c l u s i o n s  a b o u t  

chromatographic  r e t e n t i o n  and band broadening, i t  i s  now 

recogn ized  t h a t  e q u i l  i b r i u n  ( o r  quasi  e q u i l  i b r i u m )  can b e  a t t a i n e d  

o n l y  a t  t h e  band maximum and n o t  a t  o t h e r  points.13' Most 

pseudophase t h e o r y  a t t e m p t s  t o  e x p l a i n  r e t e n t i o n  ( i . e . ,  t h e  

l o c a t i o n  o f  t h e  band maximum) i n  terms o f  t h e  amount o f  a t h i r d  

phase p r e s e n t  (e.g., t h e  pseudophase which can b e  a m i c e l l e ,  

c y c l o d e x t r i n ,  e t c . )  p l u s  t h e  a d d i t i o n a l  accanpaning e q u i l i b r i a  

( F i g u r e  14). The t h i r d  phase i s  g e n e r a l l y  a w e l l  d e f i n e d  and 

c o n t r o l l e d  component  o f  t h e  m o b i l e  phase.  Thus f a r ,  

n o n e q u i l i b r i u m  o r  k i n e t i c  e v a l u a t i o n s  o f  m i c e l l a r  LC have 
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210 ARMSTRONG 

g e n e r a l l y  used t h e  same approach proposed b y  Giddings13' and van 

Deemter, e t  a1 . 1 4 0  f o r  t r a d i t i o n a l  chromatography. 

I n  1964, Her r i es ,  e t  a l .  dev i sed  a GPC method t o  de te rm ine  

t h e  p a r t i t i o n  c o e f f i c i e n t s  o f  compounds between m i c e l l a r  and 

aqueous phases.64 These c o e f f i c i e n t s  were needed t o  see i f  

changes i n  r e a c t i o n  r a t e s  c o u l d  be observed i n  systems where two 

r e a c t a n t s  p a r t i  t i o n  d i f f e r e n t l y  i n  a b i p h a s i c  system. They 

d e f i n e d  a system i n  which t h e  s i n g l e  p a r t i t i o n  c o e f f i c i e n t  o f  

i n t e r e s t  was t h a t  between aqueous and m i c e l l a r  phases and n o t  

between s t a t i o n a r y  and m o b i l e  phases.64 F o l l o w i n g  t h e  t rea tmen t  o f  

M a r t i n  and S ~ n g e , ~ ~ ~  t h e y  a r r i v e d  a t  t h e  f o l l o w i n g  equa t ion  which 

d e s c r i b e s  t h e  e l u t i o n  o f  a smal l  s o l u t e  on a Sephadex 6-25 column 

w i t h  a m i c e l l a r  mob i l e  phase: 

Y(P - 1 ) C  1 
(3 1 + -- 'i -- = 

ve - "0 k' Kd k' Kd 

Where Vi, Vo and Ve a r e  imbibed ( i n t e r n a l  s t a t i o n a r y  phase), v o i d  

and e l u t i o n  volumes r e s p e c t i v e l y ,  v i s  t h e  p a r t i a l  s p e c i f i c  volume 

o f  t h e  d e t e r g e n t  mo lecu le  i n  t h e  m i c e l l e ,  i s  t h e  m o l e c u l a r  

s i e v i n g  constant ,  k' i s  a p r o p o r t i o n a l i t y  cons tan t ,  P i s  t h e  

p a r t i t i o n  c o e f f i c i e n t  o f  a s o l u t e  between t h e  m i c e l l e  and water  

and C i s  t h e  c o n c e n t r a t i o n  o f  s u r f a c t a n t  i n  t h e  m o b i l e  phase.64 

More than  a decade l a t e r ,  t h e  f i r s t  r e p o r t s  on m i c e l l a r  

chromatography began t o  appear. One o f  t hese  used a s l i g h t l y  

m o d i f i e d  v e r s i o n  o f  equa t ion  3 t o  d e s c r i b e  t h e  GPC s e p a r a t i o n  and 

par  t i  t i o n  i ng  behav i o r  o f  t RNA ' s (Sec t  i o n  I I I - A )  : 6o 

Kd 
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MICELLES IN SEPARATIONS 

w Q ( P  - l ) C  1 'i - +- 
'e - "o k '  Kd k '  Kd 

2 7 1  

(4 )  

Where Q i s  t h e  number o f  m i c e l l e s  i n  t h e  e x t e r n a l  volume (V,) 

d i v i d e d  by t h e  t o t a l  number o f  m i c e l l e s  i n  the  column ( i n  Vo + 

Vi). Bo th  equa t ions  ( 3 )  and ( 4 )  reduce t o  t h e  s tandard g e l  

f i l t r a t i o n  equa t ion  i n  t h e  absence o f  m i c e l l e s  a s  seen below. 

ve = vo + P vi (5) 

The e x t e n s i o n  o f  p a r t i t i o n  t h e o r y  t o  m i c e l l a r  HPLC r e q u i r e d  two 

a d d i t i o n a l  s teps.  The f i r s t  i n v o l v e d  t h e  f o r m u l a t i o n  o f  t h e  

t h r e e - p h a s e  model  w i t h  t h e  t h r e e  accompany ing  p a r t i  t i o n  

c o e f f i c i e n t s  ( F i g u r e  14) ,  and t h e  second invo lved  t h e  d e r i v a t i o n  

o f  an e f f e c t i v e  p l a t e  volume (V) term which takes  i n t o  account a l l  

a p p r o p r i a t e  m i c e l l a r  parameters. The e f f e c t i v e  p l a t e  volume (V)  

i s  r e l a t i v e l y  s imp le  and can b e  determined by i n s p e c t i o n  f o r  

t r a d i t i o n a l  p a r t i t i o n  chromatography 138 and GPC64 b u t  i s  

81 s u f f i c i e n t l y  comp l i ca ted  t o  r e q u i r e  d e r i v a t i o n  i n  m i c e l l a r  LC. 

Given t h e  c o r r e c t  q u a n t i t y  f o r  " V "  one can e a s i l y  complete t h e  

d e r i v a t i o n  and arrange t h e  equa t ion  i n t o  t h e  t r a d i t i o n a l  format :  

where V,, V, and V e  a r e  t h e  volume o f  t h e  s t a t i o n a r y  phase, m o b i l e  

phase and e l u t i o n  r e s p e c t i v e l y ,  Pmw i s  t h e  p a r t i t i o n  c o e f f i c i e n t  
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272  ARMSTRONG 

o f  a s o l u t e  between m i c e l l a r  and aqueous phases and Psw i s  t h a t  

be tween  s t a t i o n a r y  and aqueous phases.  81 The p a r t i t i o n  

c o e f f i c i e n t  between m i c e l l a r  and s t a t i o n a r y  phases (Psm) i s  g i v e n  

b y  t h e  r a t i o  o f  t h e  o t h e r  c o e f f i c i e n t s :  

' mw 

Equat ion 6 can be d e r i v e d  so as t o  i n c l u d e  any two o f  t h e  t h r e e  

p a r t i t i o n  c o e f f i c i e n t s .  When m i c e l l e s  a r e  n o t  p r e s e n t  i n  t h e  

m o b i l e  phase, equa t ion  6 reduces t o  the  normal p a r t i t i o n  

44,118,119 equation.81 

and P e l i z z e t t i  e t  a l .  87988 have i n d i c a t e d  t h a t  o b t a i n i n g  b i n d i n g  

:onstants (Ks) from p a r t i t i o n  c o e f f i c i e n t s  ( P s )  i s  a t r i v i a l  

i rocess s ince:  

Be rez in  e t  a1 . , 84-86 Armstrong and S t ine ,  

nere " V "  is t h e  m o l a r  volume. 

Armstrong and S t i n e  showed t h a t  t h e  chrom t r p h i c  mechanism 

was fundamenta l ly  t h e  same i n  m i c e l l a r  and c y c l o d e x t r i n  TLC a s  f o r  

LC and de r i ved  a r e l a t e d  pseudophase TLC r e t e n t i o n  equa t ion :  

where Rf i s  t h e  TLC r e t a r d a t i o n  f a c t o r  and 0 i s  t h e  phase r a t i o  

( i .e.,  V s / V m ) . 4 4  In o r d e r  t o  use eq. ( 1 0 )  i n  TLC one must  f i r s t  
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MICELLES IN SEPARATIONS 2 1 3  

v e r i f y  t h a t  t h e  c o n c e n t r a t i o n  o f  t h e  pseudophase rema ins  c o n s t a n t  

d u r i n g  development o r  make a p p r o p r i a t e  c o r r e c t i o n s  i f  i t  does 

not .  44 

Arunyanar t  and C1 i n e  Love u t i l i z e d  a pseudophase r e t e n t i o n  

132 equat ion based on c a p a c i t y  f a c t o r s  ( k ' )  and b i n d i n g  c o n s t a n t s .  

I n  f a c t ,  one can r e a r r a n g e  pseudophase r e t e n t i o n  e q u a t i o n s  i n t o  a t  

l e a s t  39 r e l a t e d  forms f o r  LC, TLC and GPC. T y p i c a l  examples a r e  

shown i n  Tab le  V I  f o r  LC and Tab le  V I I  f o r  TLC. Fo r  a g i v e n  

technique, o b t a i n i n g  one e q u a t i o n  f rom another  i s  c o n c e p t u a l l y  and 

m a t h e m a t i c a l l y  t r i v i a l .  For  example, one can o b t a i n  any e q u a t i o n  

i n  Table V I ,  f r om another ,  b y  making one o r  more o f  t h e  f o l l o w i n g  

a l g e b r a i c  s u b s t i t u t i o n s :  l / k '  = Vm/(Ve-Vm), 1 / 0  = V,/V,, Ve -Vm = 

F ( t r - t m ) ,  Psw = K, [ A ] ,  and K, = (Pmw-l )  and r e a r r a n g i n g .  A l l  

symbols a r e  d e f i n e d  i n  Table V I  and a l l  o f  t h e  above r e l a t i o n s h i p s  

a re  we1 1 known i n  t h e  chromatographic  1 i t e r a t u r e .  Proponents o f  

t h i s  t ype  o f  s t a t i s t i c a l  r e - e x p r e s s i o n  c l a i m  t h a t  such e x c e r c i s e s  

a r e  w o r t h w h i l e  i f  t h e  purpose i s  t o  p u t  t h e  e q u a t i o n  i n t o  a form 

which i s  more convenient ,  y i e l d s  more da ta ,  d i f f e r e n t  da ta ,  more 

accu ra te  data,  e t c .  141y142 I n  t h e  case o f  t h e  pseudophase 

r e t e n t i o n  equa t ions  f o r  LC t h e r e  a r e  d i f f e r e n t  advantages i n  

p l o t t i n g  d i f f e r e n t  equat ions.  For example, va lues  o f  Psw a r e  most 

e a s i l y  o b t a i n e d  from p l o t s  o f  equa t ions  11 and 12. One can avo id  

measuring v o r  V by  us ing  equa t ions  13, 16, 17, o r  22. Equat ions 

20-22 g e n e r a l l y  produce l e s s  accu ra te  va lues  o f  P o r  K.  T h i s  i s  

because t h e  g r e a t e s t  r e l a t i v e  e r r o r  g e n e r a l l y  i n v o l v e s  measurement 

o f  t h e  v o i d  volume ( V m ) .  Reported V, va lues  (which a r e  techn ique  
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274 ARMSTRONG 

dependent) can v a r y  40% o r  more. I n  us ing  c a p a c i t y  f a c t o r s  

[k’=(Ve-Vm)/Vm], t h e  r e l a t i v e  e r r o r  o f  V, e n t e r s  i n t o  t h e  

exp ress ion  t w i c e  and i n  t h e  same d i r e c t i o n .  Consequently t h e  

r e l a t i v e  u n c e r t a i n t i e s  i n  t h e  l e f t  s i d e  o f  t h e  v a r i o u s  equa t ions  

i n  Table V I  can be d i f f e r e n t .  For  s o l u t e s  w i t h  s h o r t  r e t e n t i o n  

t imes,  t h e  r e l a t i v e  u n c e r t a i n t i e s  i n  the  v a r i o u s  forms o f  t h e  

pseudophase r e t e n t i o n  equa t ions  are:  V s / ( V e  - Vm) < l / ( V e  - Vm) = 

l / ( t r  - tm) < l / k ’ .  Fo r  s o l u t e s  w i t h  l o n g  r e t e n t i o n  t i m e s  t h e  

r e l a t i v e  u n c e r t a i n t i e s  are:  l / ( V e  - Vm) = l / ( t r  - tm) < V s / ( V e  - 
Vm) < l / k ’ .  I n  t h e  former case, V s / ( V e  - Vm) has t h e  l o w e s t  

r e l a t i v e  u n c e r t a i n t y  o n l y  i f  t h e  volume o f  t h e  s t a t i o n a r y  phase 

(V,) i s  determined by  s u b t r a c t i n g  V, from t h e  t o t a l  column volume. 

T h i s  means t h a t  t h e  r e l a t i v e  u n c e r t a i n i t y  i n  Vs would be about t h e  

same and i n  t h e  o p p o s i t e  d i r e c t i o n  t o  t h a t  o f  V,, and t h e r e f o r e  

cance l .  I f  Vs i s  determined independent ly ,  t h e n  p l o t s  o f  l / ( V e  - 
Vm) o r  l / ( t r  - tm) would have t h e  l owes t  r e l a t i v e  u n c e r t a i n t y  f o r  

b o t h  s t r o n g l y  and weakly r e t a i n e d  so lu tes .  

One o f  t h e  u s e f u l  aspects  o f  t h e  pseudophase r e t e n t i o n  

equa t ions  i s  t h a t  t h e y  can b e  used t o  e x p e r i m e n t a l l y  de te rm ine  

p a r t i t i o n  c o e f f i c i e n t s  and /o r  b i n d i n g  cons tan ts .  A l l  forms o f  t h e  

equa t ion  a r e  p l o t t e d  i n  t h e  same manner shown i n  F i g u r e  17. 

P l o t t i n g  t h e  l e f t  hand s i d e  o f  any pseudophase r e t e n t i o n  equa t ion  

versus s u r f a c t a n t  c o n c e n t r a t i o n  i n  t h e  m i c e l l e  (C) should g i v e  a 

s t r a i g h t  l i n e  o f  p o s i t i v e  s lope ( f o r  s o l u t e s  and pseudophases t h a t  

adhere t o  t h e  t h e o r e t i c a l  assunpt ions,  s e c t i o n  1114). From t h e  

s lope and i n t e r c e p t  one can c a l c u l a t e  any P o r  K value.  S o l u t e s  
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MICELLES IN SEPARATIONS 2 1 5  

TvD ica l    lots 

r 

I 1 I I 
0 0.1 0.2 0.3 

I 1 I I 
0 0.1 0.2 0.3 

(Micellar Surfactant] 

F i g u r e  17 

o f  t h e  DSeUdODhaSe r e t e n t i o n  eaua t ions .  One can 
c a l c u l a t e  a l l  p e r t i n e n t  b i n d i n g  c o n s t a n t s  and p a r t i t i o n  
c o e f f i c i e n t s  from t h e  s lopes  and i n t e r c e p t s  o f  p l o t s  such as  
these. Note, t h e  c r o s s i n g  o f  one l i n e  b y  ano the r  ( a s  i n  "b")  
i n d i c a t e s  a change i n  r e t e n t i o n  order .  

which d e v i a t e  from t h i s  b e h a v i o r  w i l l  be d iscussed a t  t h e  end o f  

t h i s  s e c t i o n .  I f  one p l o t s  t h e  t o t a l  amount o f  s u r f a c t a n t  o v e r  a 

v e r y  wide range o f  c o n c e n t r a t i o n  one o b t a i n s  p l o t s  such as  those 

shown i n  F i g u r e  18. The f i r s t  "break"  i n  t h e  c u r v e  a t  l o w  

s u r f a c t a n t  c o n c e n t r a t i o n s  occu rs  a t  t h e  CMC. The l e v e l i n g  o f  t h e  

c u r v e  a t  h i g h  s u r f a c t a n t  c o n c e n t r a t i o n s  occu rs  when t h e  s o l u t e  i s  

e l u t e d  near t h e  v o i d  volume. I f  t h e r e  a r e  i o n  i n t e r a c t i o n  e f f e c t s  

be low t h e  CMC, t h e  s lope  o f  t h i s  p o r t i o n  o f  t h e  c u r v e  i s  nega t i ve .  

The V,-Intxcept Paradox. An apparent  way t o  m in im ize  t h e  

e f f e c t  o f  t h e  l a r g e  u n c e r t a i n i t y  o f  V, i s  t o  a d j u s t  t h e  

chromatographic parameters so t h a t  l a r g e  Ve va lues  (which d i s p l a y  

s i g n i f i c a n t l y  s m a l l e r  bounds o f  u n c e r t a i n t y )  a r e  ob ta ined .  Indeed 
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276 ARMSTRONG 

1 I 1 I 1 1 

0.2 0.4 0.6 

[Total Surfactant] 

F i g u r e  18 

A p l o t  o f  t h e  pseudophase r e t e n t i o n  equa t ion  ve rsus  t o t a l  
s u r f a c t a n t  c o n c e n t r a t i o n  ove r  a w ide r  range o f  c o n c e n t r a t i o n s .  
Below t h e  CMC t h e r e  w i l l  be l i t t l e  change i n  r e t e n t i o n  u n l e s s  
t h e r e  a r e  i o n  i n t e r a c t i o n  e f f e c t s .  A t  v e r y  h i g h  s u r f a c t a n t  

volume and f u r t h e r  c o n c e n t r a t i o n s  a s o l u t e  can e l u t e  nea r  t h e  v o i d  
i nc reases  i n  s u r f a c t a n t  c o n c e n t r a t i o n  w i l l  n o t  

as Ve i nc reases  t h e  r e l a t i v e  u n c e r t a i n t y  i n  Ve - 

ower r e t e n t i o n .  

V, decreases. The 

o n l y  problem w i t h  t h i s  approach i s  t h a t  p l o t s  o f  any pseudophase 

equa t ion  f o r  h i g h  r e t e n t i o n  systems g e n e r a l l y  produce 1 i n e s  w i t h  

g r e a t e r  s lopes a s  w e l l  as  i n t e r c e p t s  near  zero. As was no ted  

p r e v i o u s l y ,  t h i s  r e s u l t s  i n  an i nc rease  i n  t h e  r e l a t i v e  e r r o r  o f  

t h e  i n t e r c e p t . 8 1  Consequently, a t tempts  t o  m in im ize  t h e  impact o f  

t h e  u n c e r t a i n i t y  o f  Vm by  e x p e r i m e n t a l l y  maximiz ing Ve w i l l  

e v e n t u a l l y  r e s u l t  i n  a g r e a t e r  r e l a t i v e  u n c e r t a i n i t y  i n  t h e  

i n t e r c e p t  and v i c e  versa. 

S h o r t l y  a f t e r  t h e  f i r s t  pseudophase r e t e n t i o n  equa t ion  f o r  LC 

appeared ,81 S y b i l  ska and co-workers d e r i v e d  exp ress ions  t h a t  
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MICELLES IN SEPARATIONS 27 7 

accounted f o r  pH e f f e c t s  on  t h e  r e t e n t i o n  o f  weak a c i d s  and 

bases.89390 To accompl ish t h i s  t h e y  had t o  i n c l u d e  t h e  b i n d i n g  

c o n s t a n t s  o f  b o t h  t h e  i o n i z e d  and un ion i zed  forms o f  a s o l u t e  as  

w e l l  as t h e  Ka o r  Kb o f  t h e  s o l u t e  i n  the  pseudophase r e t e n t i o n  

express ion.  The r e s u l t  o f  t h e i r  d e r i v a t i o n  was r e p o r t e d  u s i n g  

b o t h  r e t e n t i o n  t i m e s  (Eq. 26)89 and c a p a c i t y  f a c t o r s  (Eq. 27) : ”  

tl + t2Ka/[H+] + t3K1[C} + t4K2[C]Ka/[H+I 
-- 

tabs - 1 + Ka/[H+] + K1[C] + K2[C]Ka/[H+] 

kl + k2Ka/[H+] + k3K1[C] + k4KZ[C]Ka/[H+] 
I-- 

kobs - 1 + Ka/[H+] + K1[C] + K2[C]Ka/[H+] 
(27 )  

where tabs i s  t h e  observed r e t e n t i o n  t ime; tl, t2, t3, and t4 a r e  

t h e  r e t e n t i o n  t imes  o f  t h e  un ion i zed  ion i zed ,  complexed-unionized, 

and complexed-ionized s o l u t e s  r e s p e c t i v e l y ;  Ka i s  t h e  a c i d i t y  

c o n s t a n t  o f  t h e  s o l u t e ;  K1 and K 2  a r e  t h e  r e s p e c t i v e  b i n d i n g  

cons tan ts  o f  un ion i zed  and i o n i z e d  s o l u t e s  t o  t h e  pseudophase; 

[H’] i s  t h e  hydrogen i o n  c o n c e n t r a t i o n ;  k’obs i s  t h e  observed 

c a p a c i t y  f a c t o r ;  and k’l, k ‘2 ,  k ’3 ,  and k ’ 4  a r e  c a p a c i t y  f a c t o r s  

which correspond t o  t h e  above r e t e n t i o n  t imes. S y b i l s k a  e t  a l .  

t e s t e d  t h e i r  equa t ion  u s i n g  a c y c l o d e x t r i n  pseudophase. 89990  They 

d iscussed t h e  i n f l u e n c e  o f  added s a l t  as  w e l l  as pH. Three 

d imensional  p l o t s  o f  a vs.  pseudophase c o n c e n t r a t i o n  and pH were 

made which i l l u s t r a t e  t h e  u s e f u l l n e s s  o f  equa t ions  ( 2 6 )  and ( 2 7 )  

i n  o p t i m i z i n g  separa t i ons .  As i n  t h e  case o f  m i c e l l a r  m o b i l e  

phases, t h i s  method was found t o  be l e s s  e f f i c i e n t  t han  

89,90 conven t iona l  reversed phase LC. 
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278 ARMSTRONG 

As p r e v i o u s l y  mentioned, d e v i a t i o n s  from pseudophase 

r e t e n t i o n  t h e o r y  can occur  i f  any o f  t h e  u n d e r l y i n g  assumptions 

a r e  n o t  v a l i d .  Two t y p i c a l  d e v i a t i o n s  from i d e a l  t h e o r y  a r e  shown 

i n  F i g u r e  19. I n  t h e  f i r s t  case ( p l o t  A) one o b t a i n s  a l i n e  o f  

n e g a t i v e  s lope.  T h i s  occu rs  when t h e  r e t e n t i o n  o f  a s o l u t e  

i nc reases  w i t h  m i c e l l e  o r  pseudophase c o n c e n t r a t i o n  (wh ich  i s  t h e  

o p p o s i t e  o f  expected behav io r ) .  Even more d i s c o n c e r t i n g  i s  t h e  

f a c t  t h a t  one o b t a i n s  n e g a t i v e  P and K va lues  from such p l o t s ,  

which a r e  t h e o r e t i c a l l y  imposs ib le .  Armstrong and S t i n e  have 

d iscussed t h i s  phenomenum. 1189119 I t  seems t o  occur  when a s o l u t e  

I I 1 1 I 

[Micellar Surfactant] 
0 0.2 0.4 

F i g u r e  19 

P l o t s  o f  t h e  pseudophase r e t e n t i o n  equa t ion  which i l l u s t r a t e  two 
t y p e s  o f  d e v i a t i o n  f rom i d e a l  behavior .  P l o t s  such as  t h a t  i n  
c u r v e  IIaII can occur  when a s o l u t e  i s  s t r o n g l y  excluded from t h e  
pseudophase. P l o t s  such as t h a t  i n  c u r v e  "b" can occur  when t h e  
pseudophase-solute s t o i c h i o m e t r y  i s  n o t  1 t o  1. 
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MICELLES IN SEPARATIONS 2 7 9  

i s  s t r o n g l y  r e p e l l e d  from t h e  m i c e l l e  ( a s  i n  a l i k e  charged 

s o l u t e )  and when one i s  us ing  a s t a t i o n a r y  phase t h a t  d o e s n ' t  

adsorb a l a r g e  amount o f  s u r f a c t a n t .  The s o l u t e  i s  a p p a r e n t l y  

excluded from t h e  m o b i l e  phase by  t h e  m i c e l l e  and fo rced  on to  t h e  

s t  a t  i o n a r  y phase . 118s119 T h i s  behav io r ,  which i s  sometimes 

r e f e r r e d  t o  as " a n t i b i n d i n g " ,  o b v i o u s l y  v i o l a t e s  a b a s i c  

assumption o f  pseudophase t h e o r y  ( i .e.,  t h a t  t h e  s o l u t e  b i n d s  to ,  

o r  i s  u n a f f e c t e d  by t h e  m i c e l l e ) .  Menger and Dulaney found t h a t  

" a n t i b i n d i n g "  behav io r  was n o t  l i m i t e d  t o  aqueous m i c e l l a r  m o b i l e  

phases.143 The apparent  excluded volume e f f e c t  was observed w i t h  

heptane s o l u t i o n s  o f  d e r i v a t i z e d  8 - c y c l o d e x t r i n .  TLC s t u d i e s  

showed t h a t  1,2-dimethyl i n d o l e  e x h i b i t e d  " a n t i b i n d i n g "  behav io r  

w h i l e  i ndo le ,  2,3-dimethyl i n d o l e  and p -n i t ropheno l  e x h i b i t e d  

b i n d i n g  behavior .  Nonbinding was observed w i t h  o - n i t r o p h e n o l  i n  

heptane and p - n i t r o p h e n o l  i n  a c e t o n i t r i l e .  These r e s u l t s  were 

used t o  s tudy t h e  n a t u r e  o f  t h e  hos t -gues t  i n t e r a c t i o n  and 

demonstrated t h a t  b i n d i n g  cou ld  occur when t h e  c y c l o d e x t r i n  c a v i t y  

i s  more p o l a r  t han  t h e  s o l v e n t .  143 P l o t  B o f  F i g u r e  19 shows an 

e n t i r e l y  d i f f e r e n t  t ype  o f  d e v i a t i o n  from i d e a l  behavior .  I n s t e a d  

o f  a s t r a i g h t  l i n e  o f  p o s i t i v e  s lope,  one o b t a i n s  a c u r v e  o f  

i n c r e a s i n g  s lope.  T h i s  b e h a v i o r  was observed by  B a r f o r d  and 

S l i w i n s k i 1 3 '  f o r  p r o t e i n s  and .by Armstrong, e t  a l .  f o r  b o t h  

macromolecules ( w i t h  m i c e l l a r  m o b i l e  phases) and sma l l  s o l u t e s  

( w i t h  c y c l o d e x t r i n  m o b i l e  phases).144 Armstrong e t  a l .  have shown 

t h a t  upward c u r v i n g  p l o t s  ( F i g u r e  198) can occur  when t h e  

s t o i c h i o m e t r y  between t h e  pseudophase and s o l u t e  i s  2 : l  o r  
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280 ARMSTRONG 

g r e a t e r .  144 It i s  w e l l  known t h a t  some s o l u t e s  can b i n d  t o  two 

c y c l o d e x t r i n  mo lecu les  a t  t h e  same t ime, f o r  example. Analogous 

m u l t i p l e  e q u i l i b r i a  can occur  i n  m i c e l l a r  systems. For  2 : l  

complexes t h e  c o r r e c t  pseudophase r e t e n t i o n  equa t ion  i s :  

K ~ K ~ C ~  Rf  - 1 lC 

k ’  1 -Rf K[A]0 K[A]0 KCA10 
(28 1 

1 - or - --+-+ 

where K ,  K1 and K 2  a r e  t h e  b i n d i n g  cons tan ts  t o  t h e  s t a t i o n a r y  

phase, f i r s t  pseudophase, and second pseudophase r e s p e c t i v e l y .  

When K2  i s  zero, t h i s  equa t ion  reduces t o  t h e  usual pseudophase 

r e t e n t i o n  equa t ion  (Tab les  V I  and V I I ) .  T h i s  e q u a t i o n  can b e  

rearranged and p l o t t e d  so t h a t  a l l  b i n d i n g  c o n s t a n t s  can b e  

c a l c u l a t e d  

Van Deemeter p l o t s  have been pub1 ished by Yarmchuk e t  a1 .121 

and Borgerd ing and H i n ~ e * ~ ~  f o r  s o l u t e s  separated w i t h  m i c e l l a r  

m o b i l e  phases. Minima appear a t  l i n e a r  v e l o c i t i e s  between 0.1 and 

0 . 4  un/sec. Borgerd ing and Hinze p o i n t  o u t  t h a t  acco rd ing  t o  

p r e v i o u s l y  d e r i v e d  r a t e  equat ions,  145-148 t h e  s t a t i o n a r y  phase 

mass t r a n s f e r  c o n t r i b u t i o n  i s  approximated by t h e  s lope o f  t h e  van 

Deemter f l o w - e f f i c i e n c y  c u r v e  a t  t h e  h i g h e r  1 i n e a r  v e l o c i t i e s .  

They showed t h a t  i n c r e a s i n g  t h e  c o a t i n g  o f  B r i j - 3 5  s u r f a c t a n t  on  

t h e  s t a t i o n a r y  phase d r a m a t i c a l l y  decreased t h e  e f f i c i e n c y  o f  

these separa t i ons .  123 

I V .  EXTRACTION AND PARTITIONING 

M i c e l l e s  have been found t o  be u s e f u l  i n  seve ra l  d i f f e r e n t  

p a r t i t i o n i n g  and e x t r a c t i o n  techniques a l l  o f  which a r e  a k i n  t o  
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MICELLES IN SEPARATIONS 281 

1 i q u i d - l i q u i d  e x t r a c t i o n s .  Four techn iques  w i l l  be d iscussed.  The 

f i r s t  i n v o l v e s  t h e  a d d i t i o n  o f  m i c e l l e s  t o  t h e  c l a s s i c  

oc tano l -wa te r  p a r t i t i o n  system, t h e  second method uses m i c e l l a r  

s o l u t i o n s  i n  1 i q u i d - s o l i d  e x t r a c t i o n s ,  t h e  t h i r d  i n v o l v e s  t h e  

p a r t i t i o n i n g  o f  s o l u t e s  between n o n i o n i c  m i c e l l e s  and wa te r  

fo l l owed  by a r a p i d  c o n c e n t r a t i o n - i s o l  a t i o n  step, and t h e  f o u r t h  

techn ique  i n v o l v e s  t h e  use o f  reve rsed  m i c e l l e s  i n  a v a r i e t y  o f  

o rgan ic  s o l v e n t  e x t r a c  t a n t s .  

J a n i n i  and A t t a r i  added SDS m i c e l l e s  t o  t h e  aqueous phase o f  

a n  o c t a n o l  : w a t e r  p a r t i t i o n i n g  e x p e r i m e n t .  1 4 9  They were  

p a r t i c u l a r l y  i n t e r e s t e d  i n  t h e  octano1:water system because o f  i t s  

widespread use as an e m p i r i c a l  measure o f  h y d r o p h o b i c i t y  f o r  

b i o  1 og i c a1 and pharmacol og i c a1 com po und s , 1 5 0 ~ 1 5 ~  a s  w e l l  as  i n  a 

number o f  o t h e r  systems. 152-154 The a d d i t i o n  o f  m i c e l l e s  t o  t h e  

aqueous l a y e r  a l l o w s  one t o  t r e a t  t h i s  l i k e  a t h r e e  phase system 

j u s t  as  had been done i n  m i c e l l a r  LC.*l A s i g n i f i c a n t  advantage 

o f  t h i s  system i s  t h a t  h i g h e r  l e v e l s  (which can b e  more a c c u r a t e l y  

measured)  o f  h y d r o p h o b i c  s o l u t e s  c a n  b e  f o u n d  i n  t h e  

aqueous-mice l lar  l a y e r  than  can b e  found i n  a pure aqueous l a y e r .  

The d isadvantage i s  t h a t  one must b e  more c a r e f u l  o f  emuls ion 

fo rma t ion ,  and aggregates i n  t h e  o c t a n o l  l a y e r  can comp l i ca te  t h e  

i n t e r p r e t a t i o n  o f  data.  J a n i n i  and A t t a r i  d e r i v e d  t h e  f o l l o w i n g  

express ion f o r  t h e  t h r e e  phase p a r t i t i o n i n g  system: 
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282  ARMSTRONG 

where P i s  t h e  apparent  p a r t i t i o n  c o e f f i c i e n t  o f  a s o l u t e  
aPP 

between t h e  o c t a n o l  and aqueous-mice l lar  l a y e r ,  Pmw and Pow a r e  

t h e  r e s p e c t i v e  p a r t i t i o n  c o e f f i c i e n t s  between t h e  m i c e l l e  and 

water ,  and oc tano l  and water, v i s  t h e  p a r t i a l  s p e c i f i c  volume o f  

t h e  s u r f a c t a n t  and C i s  t h e  c o n c e n t r a t i o n  o f  s u r f a c t a n t  i n  t h e  

m i c e 1  1 es. The d i s t r i b u t i o n  o f  r e s o r c i n o l ,  c a t e c h o l  and 

hydroquinone was shown t o  f o l l o w  eq. 29 and t h e  r e l a t i o n s h i p  

between t h i s  techn ique  and m i c e l l a r  LC was d iscussed.  149 

Borgerd ing and Hinze used a 30% aqueous m i c e l l a r  s o l u t o n  o f  

B r i j - 3 5  t o  e x t r a c t  v a n i l l i n  and e t h y l v a n i l l i n  from tobacco 

1 eaves. 123 These s o l u t e s  can t h e n  be e a s i l y  q u a n t i t a t e d  b y  

reve rsed  phase LC w i t h  a 6% B r i j - 3 5  m i c e l l a r  m o b i l e  phase and UV 

d e t e c t i o n .  The p r e c i s i o n  o f  t h i s  technique,  determined f rom 

r e p l i c a t e  analyses, was e x c e l l e n t .  123 

Watanabe and co-workers developed a s imple,  e f f i c i e n t  

m i c e l l a r  e x t r a c t i o n  and c o n c e n t r a t i o n  technique f o r  a v a r i e t y  o f  

me ta l  che la tes ,  nonpo la r  compounds and i o n  T h i s  

method r e q u i r e s  t h e  use o f  n o n i o n i c  m i c e l l a r  s o l u t i o n s  which a r e  

known t o  undergo phase separa t i ons  when heated above t h e i r  c l o u d  

p o i n t  (see s e c t i o n  11-A). I n  a t y p i c a l  experiment, 0.5 g o f  

s o l u t i o n  c o n t a i n i n g  20% o f  an a p p r o p r i a t e  n o n i o n i c  s u r f a c t a n t  p l u s  

c h e l a t i n g  l i g a n d  i s  added t o  approx imate ly  80 m l  o f  a b u f f e r e d  

sample c o n t a i n i n g  t h e  me ta l  i o n  t o  b e  ex t rac ted .  160 The m i x t u r e  

i s  warmed u n t i l  t h e  c l o u d  p o i n t  i s  exceeded and c e n t r i f u g e d  f o r  

one minute.  The superna tan t  l i q u i d  i s  decanted l e a v i n g  about one 

gram o f  m a t e r i a l  c o n t a i n i n g  t h e  c h e l a t e d  t r a c e  me ta l .  T h i s  
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MICELLES IN SEPARATIONS 283 

m a t e r i a l  was ad jus ted  t o  2.00 m l  o f  s o l u t i o n  by  a d d i t i o n  o f  water  

p l u s  a smal l  amount o f  ano the r  n o n i o n i c  s u r f a c t a n t  which has a 

h i g h  c l o u d  p o i n t .  The c o n c e n t r a t i o n  o f  me ta l  i o n  (hav ing  been 

concen t ra ted  40x) i s  t h e n  determined spec t ropho tomet r i ca l  l y  o r  b y  

another  a p p r o p r i a t e  technique.  160 

Watanabe, e t  a l .  d i d  e a r l y  exper iments w i t h  T r i t o n  X-100 

(c loud  p o i n t  > 64'C). 155-157 More r e c e n t  exper iments u t i l i z e d  

po lyoxye thy lene  nonyl phenyl e t h e r  w i t h  an average o f  7.5 e t h y l e n e  

o x i d e  u n i t s  (PONPE-7.5). 158-162 PONE-7.5 has a c l o u d  p o i n t  be low 

room temperature a t  c o n c e n t r a t i o n s  used f o r  e x t r a c t i o n . l 6 O  The 

pe rcen t  recove ry  o f  any e x t r a c t e d  species i s  dependent on seve ra l  

f a c t o r s  i n c l u d i n g  pH, f o r e i g n  ions,  t y p e  o f  s u r f a c t a n t  a d d i t i v e ,  

e t c .  1609161 The p a r t i t i o n  t h e o r y  i n c l u d i n g  pH e f f e c t s  on 

i o n i z a b l e  s o l u t e s  have been considered by  Hoshino e t  a l .  16' The 

d i s t r i b u t i o n  o f  a s o l u t e  t h a t  can e i t h e r  g a i n  o r  l o s e  two p r o t o n s  

i s  g i v e n  by  e q u a t i o n  (30): 

where D i s  t h e  d i s t r i b u t i o n  c o e f f i c i e n t ;  P1, P2 and P j  a r e  t h e  

p a r t i t i o n  c o e f f i c i e n t s  o f  t h e  p o s t i v e l y  charged doub ly  p ro tona ted  

s p e c i e s ,  n e u t r a l  s p e c i e s  and n e g a t i v e l y  c h a r g e d  s p e c i e s  

r e s p e c t i v e l y ;  [H'] i s  t h e  hydrogen i o n  c o n c e n t r a t i o n ;  and Kal and 
161 a re  t h e  a c i d  d i s s o c i a t i o n  c o n s t a n t s  o f  a d i p r o t i c  s o l u t e .  Ka2 

T h i s  work and i t s  e x p e r i m e n t a l  j u s t i f i c a t i o n  p r o v i d e  a 

q u a n t i t a t i v e  e x p l a n a t i o n  f o r  t h e  s o l u b i l  i z a t i o n  and e q u i l i b r i u m  
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284 ARMSTRONG 

behav io r  o f  i o n i z a b l e  s o l u t e s  i n  non ion i c  m i c e l l a r  s o l u t i o n s .  

Watanabe and co-workers demonstarted t h e  u t i l i t y  o f  t h i s  

e x t r a c t i o n  method f o r  severa l  s o l u t e s  i n c l u d i n g  Mn, Zn, Cu and N i  

che la tes ,  12, AsC12, Sn14, and a v a r i e t y  o f  t h i o c y a n a t e  
2+  complexes, 155-162 T h i s  technique was a l s o  used t o  de te rm ine  Zn 

i n  c o a s t a l  seawater a t  t h e  ppb l e v e l .  162 

Hinze and co-workers f i r s t  used the  non ion ic  m i c e l l a r  c l o u d  

p o i n t  e x t r a c t i o n  technique t o  concen t ra te  and q u a n t i t a t e  

p o l  ycyc l  i c  aromat ic  hydrocarbons ( P A H s )  and o t h e r  o rgan ic  

s o l  Utes. 163 T h i s  method was p a r t i c u l a r l y  u s e f u l  f o r  d i l u t e  

aqueous env i ronmenta l  samples because advantage can be taken o f  

b o t h  t h e  c o n c e n t r a t i o n  f a c t o r  and t h e  enhanced luminescence o f  t h e  

species i n  m i c e l l a r  environments. 163 

A somewhat d i f f e r e n t  1 i q u i d - l i q u i d  e x t r a c t i o n  techn ique  

i n v o l v e s  t h e  use o f  h i g h l y  l i p o p h i l i c  s u r f a c t a n t s  d i s s o l v e d  i n  an 

o rgan ic  so l ven t ,  t o  remove and concen t ra te  a v a r i e t y  o f  i o n s  from 

aqueous s o l u t i o n .  T h i s  procedure was reviewed by  Hinze” and i s  

s u m m a r i z e d  b e l o w .  T y p i c a l  s u r f a c t a n t s  u s e d  w e r e  

d i nony l  naphthal  ene o r  d i dodecy l  naphthal  ene su l  f ona tes  as  we1 1 as 

a1 kylammonium s u r f a c t a n t s .  Bo th  me ta l  i o n s  and complex i o n s  can 

be e x t r a c t e d  i n t o  o rgan ic  s o l u t i o n .  The main q u e s t i o n  i n  t h i s  

system concerns t h e  r o l e  t h e  aggregate o r  reversed m i c e l l e  p l a y s  

i n  the  separa t i on .  The m a j o r i t y  o f  t h e  ev idence seems t o  i n d i c a t e  

t h a t  t h e  monomer s u r f a c t a n t  i s  r e s p o n s i b l e  f o r  moving t h e  aqueous 

i o n  across t h e  i n t e r f a c e ,  and i n t o  t h e  o rgan ic  l aye r .17  Reversed 

m i c e l l a r  aggregates a l s o  e x i s t  i n  the  o rgan ic  l a y e r  ( s e c t i o n  
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MICELLES IN SEPARATIONS 285 

11-B). These aggregates can se rve  as a r e p o s i t o r y  f o r  t h e  

e x t r a c t e d  ions.  Undoubtedly t h e  q u a n t i t y  and q u a l i t y  o f  i o n s  

r e s i d i n g  i n  t h e  reversed m i c e l l e  w i l l  a f f e c t  t he  s e l e c t i v i t y  and 

use fu lness  o f  t h e  e ~ t r a c t i 0 n . l ~  T h i s  t y p e  o f  e x t r a c t i o n  i s ,  

m e c h a n i s t i c a l l y  speaking, a good dea l  more comp l i ca ted  than  o t h e r  

systems. There i s  a l s o  a c o n s i d e r a b l e  amount o f  c o n t r o v e r s y  as t o  

t h e  exac t  r o l e  o f  t h e  s u r f a c t a n t s  and/or  s u r f a c t a n t  aggregates. 

There a r e  cases where aggrega t ion  does n o t  seem t o  occur  o r  when 

17 i t  occurs,  seems t o  p l a y  l i t t l e  r o l e  i n  t h e  s e p a r a t i o n  process. 

The mechan is t i c  aspects  o f  t h i s  technique remain one o f  t h e  "g ray  

areas"  r e f e r r e d  t o  i n  t h e  i n t r o d u c t i o n  where t h e  e x a c t  r o l e  and 

sometimes e x i s t e n c e  o f  t h e  aggregate i s  n o t  always c l e a r .  Desp i te  

t h e  f a c t  t h d t  t h e  mechanism and t h e o r y  o f  t h i s  method a r e  n o t  

s t r a i g h t f o r w a r d ,  t h e r e  a r e  numerous r e p o r t s  and rev iews  on 

p r a c t i c a l  a p p l i c a t i o n s .  17s164-166 The i n t e r e s t e d  reader  i s  

r e f e r r e d  t o  these  f o r  a d d i t i o n a l  i n f o r m a t i o n .  

V. ADDITIONAL MICELLAR METHODS 

One o f  t h e  more i n t e r e s t i n g  s e p a r a t i o n  techn iques  y e t  

r e p o r t e d  i s  a c a p i l l a r y  e l e c t r o k i n e t i c  method t h a t  u t i l i z e s  

m i c e l l a r  s o l u t i o n s .  Terabe e t  a l .  desc r ibed  a number o f  

chromatography-1 i k e  separa t i ons  t h a t  showed e x c e l l e n t  s e l e c t i v i t y  

and e f f i c i e n c y  (see F i g u r e  2O)? S i x t e e n  d i f f e r e n t  phenols  were 

separated i n  l e s s  than  twenty minutes.  Depending on t h e  peak used 

f o r  measurement, t h i s  techn ique  generated between 300,000 and 

500,000 p l a t e s  pe r  meter ,  w i t h  no back p ressu re  problem o r  l o n g  
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0 5 10 15 
lime, rnln 

0 

F i g u r e  20 

An e l e c t r o k i n e t i c  s e p a r a t i o n  o f  phenols w i t h  an SDS s o l u t i o n :  (1) 
water, ( 2 )  ace ty lace tone ,  ( 3 )  phenol, ( 4 )  o-c reso l ,  ( 5 )  m-cresol, 
(6 )  p-cresol  , ( 7 )  o-ch l  orophenol , ( 8 )  m-chl orophenol , ( 9 )  
p - c h l o r o p h e n o l ,  ( 1 0 )  2 , 6 - x y l e n o l ,  (11) 2 , 3 - x y l e n o l ,  ( 1 2 )  
2,5-xyl en01 , (13)  3,4-xyl en01 , (1 4) 3,5-xyl en01 , ( 15) 2,4-xyl en01 , 
(16)  p-ethy lphenol ;  m i c e l l a r  s o l u t i o n ,  1 mmol o f  SDS i n  20 m l  o f  
borate-phosphate b u f f e r ,  pH 7.0; c u r r e n t ,  28 IIA; d e t e c t i o n  
wavelength, 270 nm; temperature, ca. 25'C. Repr in ted  w i t h  
pe rm iss ion  f rom r e f .  167. 

separa t i on  t imes.  I n  a t y p i c a l  experiment, 900 mm X 0.05 mm i .d .  

m ic robore  v i t r e o u s  s i l i c a  t u b i n g  was f i l l e d  w i t h  a b u f f e r e d  SDS 

s o l u t i o n .  Each end o f  t h e  c a p i l l a r y  was p laced i n  a smal l  beaker 

c o n t a i n i n g  t h e  s u r f a c t a n t  s o l u t i o n  and a p l a t i n u m  e l e c t r o d e .  The 

sample t o  b e  separated i s  i n j e c t e d  i n t o  t h e  p o s i t i v e  end o f  t h e  

tube  and a v o l t a g e  ( 2 5  kV)  i s  a p p l i e d  ac ross  t h e  tube. An o n - l i n e  

UV d e t e c t o r  was p laced 150 mm from t h e  n e g a t i v e  end o f  t h e  tube. 

When a n i o n i c  m i c e l l e s  were used t h e  s o l u t e s  m i g r a t e d  from t h e  
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MICELLES IN SEPARATIONS 28 7 

p o s i t i v e  t o  t h e  n e g a t i v e  end o f  t h e  c a p i l l a r y .  The o p p o s i t e  

p a t t e r n  was o b s e r v e d  f o r  c a t i o n i c  m i c e l l e s .  16' The 

e l e c t r o p h o r e t i c  m i g r a t i o n  o f  t h e  m i c e l l e s  i s  opposed by a more 

r a p i d  e l e c t r o o s m o t i c  f l o w  o f  t h e  s o l v e n t .  S o l u t e s  t h a t  do  n o t  

p a r t i t i o n  t o  t h e  m i c e l l e  would be expected t o  t r a v e l  a t  t h e  same 

v e l o c i t y  a s  t h e  s o l v e n t  and e l u t e  r a p i d l y .  S o l u t e s  which tend  t o  

b i n d  t o  t h e  m i c e l l e s  (which t r a v e l  i n  the  o p p o s i t e  d i r e c t i o n  o f  

t h e  s o l v e n t )  w i l l  be e l u t e d  more s low ly .  167 T h i s  i s  a b e a u t i f u l  

example of  a l a m i n a r  "m ic roscop ic  c o u n t e r c u r r e n t "  t echn ique  which 

r e s u l t s  i n  h i g h  e f f i c i e n c i e s .  I n  subsequent work Otsuka e t  a l .  

168 used the  e l  e c t r o k i n e t i c - m i c e l l a r  method t o  separate a m i x t u r e  

o f  22 phenyl t h i o h y d a n t o i n  (PTH)-amino ac ids .  The s e p a r a t i o n  

b e h a v i o r  o f  these s o l u t e s  was s t r o n g l y  dependent on t h e  charge o f  

t h e  m i c e l l e .  

T h e o r e t i c a l  equa t ions  f o r  " e l  e c t r o k i n e t i c  chromatography" 

were r e c e n t l y  d e r i v e d  b y  Terabe, Otsuka and Ando. 16' They a l s o  

observed t h a t  t h e r e  was a l i n e a r  r e l a t i o n s h i p  between c u r r e n t  and 

m i g r a t i o n  v e l o c i t i e s  of water, m i c e l l e  and any s o l u t e ,  b u t  n o t  

between app l i ed  v o l t a g e  and these v e l o c i t i e s .  T h i s  d i sc repancy  

was exp la ined  i n  terms o f  t h e  temperature r i s e  o f  t h e  s o l u t i o n  i n  

t h e  t u b e  r e s u l t i n g  from J o u l e  hea t ing .  16' The v e l o c i t y  o f  t h e  

m i c e l l e  (v,) i n  a c a p i l l a r y  e l e c t r o k i n e t i c  exper iment  i s :  

eP 
vm = Veo + v 

where veo i s  t h e  e l e c t r o o s m o t i c  v e l o c i t y  of  t h e  m i c e l l e  and v i s  
eP 
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t h e  e l e c t r o p h o r e t i c  v e l o c i t y  o f  t h e  m i c e l l e .  Furthermore: 

and 

2 Er,  
v I- f(Ka) E 

ep 3rl 
( 3 3 )  

where E i s  t h e  p e r m i t t i v i t y  o f  t h e  l i q u i d ,  r, i s  t h e  z e t a  

p o t e n t i a l ,  rl i s  t h e  v i s c o s i t y  o f  t h e  l i q u i d ,  !l i s  t h e  l e n g t h  o f  

t h e  tube, r i s  t h e  t u b e  r a d i u s ,  e i s  t h e  e lementary charge, F i s  

t h e  Faraday cons tan t ,  a i s  t h e  r a d i u s  o f  t h e  s o l u t e  i o n  "j", c j  

i s  t h e  number o f  moles per u n i t  volume o f  s o l u t e  " j" ,  Z .  i s  t h e  

charge o f  s o l u t e  "j", I i s  t h e  c u r r e n t  due t o  t r a n s p o r t  o f  charge 

by  t h e  f l u i d ,  K i s  t h e  Debye-Hu parameter where the  f u n c t i o n  

f (  Ka) depends on t h e  p a r t i c l e  shape and E i s  t h e  e l e c t r i c  f i e l d  

j 

J 

s tr eng t h . 69 
The c a p a c i t y  f a c t o r  f o r  " e l e c t r o k i n e t i c  chromatography" ( k ' )  

i s  d e f i n e d  as t h e  r a t i o  o f  t h e  amount o f  s o l u t e  i n  t h e  m i c e l l a r  

phase over  t h e  amount i n  t h e  b u l k  aqueous phase. 15* Note t h a t  

t h i s  i s  d i f f e r e n t  from t h e  t r a d i t i o n a l  chromatographic d e f i n i t i o n  

o f  c a p a c i t y  f a c t o r .  The c a p a c i t y  f a c t o r ,  k ' ,  can be c a l c u l a t e d  

frm r e t e n t i o n  t imes  by: 
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MICELLES IN SEPARATIONS 289 

where tr i s  t h e  r e t e n t i o n  t i m e  o f  a s o l u t e ,  to i s  t h e  r e t e n t i o n  

t i m e  o f  a s o l u t e  t h a t  does n o t  a s s o c i a t e  w i t h  t h e  m i c e l l e  and t, 

i s  the r e t e n t i o n  t i m e  o f  t h e  m i c e l l e .  16' Given t h i s  c a p a c i t y  

f a c t o r ,  a l l  o f  t h e  o t h e r  t r a d i t i o n a l  chromatographic parameters 

(e.g., r e s o l u t i o n ,  p l a t e  number, p a r t i t i o n  c o e f f i c i e n t ,  e t c . )  a r e  

e a s i l y  determined.  

Recen t l y  Terabe and co-workers have done " e l e c t r o k i n e t i c  

chromatography" us ing  an i o n i z a b l e  8 - c y c l o d e x t r i n  d e r i v a t i v e .  170 

The s e p a r a t i o n  o f  seve ra l  aromat ic  s t r u c t u r a l  isomers was 

d e m o n s t r a t e d .  The r e t e n t i o n  p a r a m e t e r s  and d i s t r i b u t i o n  

c o e f f i c i e n t s  were d iscussed.  170 

M i c e l l a r  s o l u t i o n s  have been used by Pate1 and Foss t o  a l t e r  

t h e  p a r t i t i o n i n g  behav io r  i n  e q u i l  i b r iun  d i a l y s i s .  17' I keda  and 

co-workers used m i c e l l a r  s o l u t i o n s  i n  t h e  dynamic d i a l y s i s  o f  

t e t r a c y c l i n e  a n t i b i o t i c s .  172y173 Using a Langmuir approach and 

a p p r o p r i a t e  a c i d i t y  cons tan ts ,  t h e y  were a b l e  t o  r e l a t e  t h e  

p a r t i t i o n  l a w  t o  t h e  amount o f  s u r f a c t a n t  p resen t  and t h e  pH o f  

t h e  system.173 They found t h a t  t h e  apparent  p a r t i t i o n  c o e f f i c i e n t  

( P  ) o f  a d r u g  between the  m i c e l l e  and water  was g i v e n  by :  aPP 

Om/ v 

papp = D w / ( l  - V) 
(35) 

where v i s  t h e  volume f r a c t i o n  o f  t h e  m i c e l l a r  phase and Dm and Ow 

a r e  t h e  amount o f  t h e  d r u g  i n  t h e  m i c e l l e  and b u l k  water  

r e ~ p e c t i v e 1 y . l ~ ~  The e f f e c t  of pH on t h e  apparent  d i s t r i b u t i o n  o f  

d rug  between m i c e l l a r  and aqueous phases is g i v e n  by:  
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where Ka i s  t h e  a c i d  d i s s o c i a t i o n  c o n s t a n t  o f  t h e  drug,  [H'] i s  

t h e  hydrogen i o n  c o n c e n t r a t i o n  and Pc and P, a r e  t h e  p a r t i t i o n  

c o e f f i c i e n t s  o f  t h e  p ro tona ted  and z w i t t e r i o n i c  species,  

r e s p e c t i v e 1  y. 173 Dynamic d i a l y s i s  exper iments were done w i t h  

c a t i o n i c ,  a n i o n i c  and n o n i o n i c  m i c e l l e s .  The r e s u l t s  were 

compared t o  oc tano l -wa te r  p a r t i t i o n  exper iments.  It was 

demonstrated t h a t  t h e  i o n i z e d  form o f  a d rug  assoc ia ted  more 

s t r o n g l y  w i t h  n o n i o n i c  m i c e l l e s  than  the  n e u t r a l  form. I t was 

f u r t h e r  noted t h a t  t h e  pH dependency o f  t h e  t e t r a c y c l ' i n e - n o n i o n i c  

m i c e l l e  i n t e r a c t i o n s  d i d  n o t  c o r r e l a t e  w i t h  t h a t  o f  comparable 

oc tano l  -water s tud ies .  173 

I V .  ANALOGOUS TECHNIQUES 

S u r f a c t a n t  m i c e l l e s  a r e  n o t  t h e  o n l y  t h i n g  one can add t o  a 

pure so l ven t ,  t h e r e b y  c r e a t i n g  an unusual m o b i l e  phase o r  s o l u t i o n  

f o r  separ t i ons .  Cyc lodex t r i ns ,  f o r  example, have a l r e a d y  been 

mentioned because t h e  same t h r e e  phase model and t h e o r y  used t o  

d e s c r i b e  m i c e l l a r  m o b i l e  phases can be used f o r  s o l u t i o n s  o f  t hese  

cycloamyloses. T h i s  was amply demonstrated by Vekama e t  al. ,  134 

Armstrong, S t i r ~ e , ~ ~  S y b i l  ska e t  a1 .89s90 ( s e c t i o n  111-D), Menger 

and D ~ l a n e y ' ~ ~  and Terabe e t  a l .  170 C y c l o d e x t r i n  m o b i l e  phases 

t e n d  t o  show g r e a t e r  s e l e c t i v i t y  t o w a r d s  s t r u c t u r a l  and 

geomet r i ca l  isomers than  do  m i c e l l a r  m o b i l e  phases. 

i s  because o f  t h e i r  a b i l i t y  t o  form i n c l u s i o n  complexes w i t h  a 

66,174,175 T h i s  
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v a r i e t y  o f  s o l u t e s .  176-181 One advantage c y c l o d e x t r i n  m o b i l e  

phase have ove r  m i c e l l a r  m o b i l e  phases i s  t h a t  t h e i r  UV c u t  o f f  i s  

l e s s  than  200 nm, which i s  a s  good o r  b e t t e r  t han  most HPLC-grade 

water. A d isadvan tage  o f  c y c l o d e x t r i n s  i s  t h a t  t h e y  a r e  more 

expensive than  most s u r f a c t a n t s .  C y c l o d e x t r i n  m o b i l e  phases a r e  

b u t  one aspect o f  t h e  many uses o f  c y c l o d e x t r i n s  i n  separa t i ons .  

S ince i t  i s  beyond t h e  scope o f  t h i s  work t o  cons ide r  a l l  aspects  

o f  c y c l o d e x t r i n s  mediated separa t i ons ,  t h e  i n t e r e s t e d  reader  i s  

r e f e r r e d  t o  an e x c e l l e n t  r e v i e w  on t h e  s u b j e c t  b y  Hinze. 179 

C e r t a i n  polymers can b e  t r e a t e d  as an a d d i t i o n a l  phase when 

used as m o b i l e  phase o r  s o l u t i o n  m o d i f i e r s .  Two examples w f l l  b e  

g i ven .  Oasgupta and co-workers used p o l y s t y r e n e s u l  f ona te  t o  

m o d i f y  p e r m i t t e d  and Donnan f o r b i d d e n  i o n  p e n e t r a t i o n  r a t e s  

th rough  a v a r i e t y  o f  smal l  d iamete r  i o n  exchange membrane 

tubes. 182 L i k e  m i c e l l e s ,  i o n i c  polymers behave as l i q u i d  i o n  

e x c h a n g e r s ,  t h e r e b y  r e d u c i n g  t h e  c o n c e n t r a t i o n s  o f  f r e e  

c o u n t e r i o n s  t h a t  can t r a v e r s e  a membrane. 182 

Hinze and co-workers have used a v a r i e t y  o f  l i n e a r  d e x t r a n  

polymers as  chromatographic  m o b i l e  phase m 1 0 d i f i e r s . l ~ ~  They found 

t h a t  t h e  e f f e c t  o f  t h e  polymer on chromatographic  r e t e n t i o n  was 

somewhat s i m i l a r  t o  t h a t  o f  c y c l o d e x t r i n s .  They p o s t u l a t e d  t h a t  

t h e  d e x t r a n  was a b l e  t o  wrap around a v a r i e t y  o f  o r g a n i c  s o l u t e s ,  

p r o v i d i n g  an env i ronment  s i m i l a r  t o  t h a t  o f  a c y c l o d e x t r i n .  163 I n  

a somewhat analogous manner, po l  y e t h y l  enegl yco l  i s  known t o  be 

a b l e  t o  wrap around and canplex v a r i o u s  me ta l  i ons .  It i s  l i k e l y ,  

t h e r e f o r e ,  t h a t  t h e y  cou ld  a f f e c t  t h e  r e t e n t i o n  o f  a p p r o p r i a t e  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



2 9 2  ARMSTRONG 

s o l u t e s  i n  a manner s i m i l a r  t o  t h a t  o f  crown e t h e r s  o r  c ryp tands  

( v  i d e  i n  f r a )  . 
Crown e t h e r s  and c ryp tands  have been used as m o b i l e  phase 

m o d i f i e r s  t o  separate s o l u t e s  c o n t a i n i n g  p r imary  amines and some 

meta l  i ons .  183-188 Ammonium i o n  has about t h e  same i o n i c  r a d i u s  

as  potassium ion. Bo th  b i n d  s t r o n g l y  t o  t h e  c a v i t y  o f  18-crown-6 

based crown e t h e r s .  C r a m  and co-workers synthes ized a c h i r a l  

18-crown-6 analogue which was added t o  t h e  m o b i l e  phase t o  

f a c i l i t a t e  t h e  s e p a r a t i o n  o f  enant iomers o f  amino a c i d s  and amino 

a c i d  esters.183 Wiechmann separated groups o f  b i o g e n i c  amines 

us ing  a crown e t h e r  c o n t a i n i n g  m o b i l e  phase. 184 Nakagawa and 

co-workers d i d  a c o n s i d e r a b l e  amount o f  work on 18-crown-6 

m o d i f i e d  m o b i l e  phases. 185-188 They d e r i v e d  fo rmu las  which 

accounted f o r  observed pH e f f e c t s  on r e t e n t i o n .  

e f f e c t i v e n e s s  o f  t h i s  techn ique  was demonstrated f o r  B-lactam 

an t ib io t i cs ,186  catecholamines, 187 and a1 k a l  i metal  s .  188 Most o f  

these LC separa t i ons  were done i n  t h e  reve rsed  phase mode. 

185,187 The 

Microemuls ions can a l s o  b e  used as m o b i l e  phases i n  l i q u i d  

chromatoc~raphy. '~  Armstrong and Ward used o i l  - i n -wa te r  and water-  

i n - o i l  microemul s ions  t o  separate a s e r i e s  o f  f u n c t i o n a l  i zed  

aromat ic  hydrocarbons b y  LC and TLC. B i n d i n g  cons tan ts  o r  

p a r t i t i o n  c o e f f i c i e n t s  cou ld  be c a l c u l a t e d  f o r  these so l  Utes as  

w e l l .  73 

V I I .  CONCLUSIONS 

M i c e l l e s  have been used i n  a wide va r i ' e t y  o f  s e p a r a t i o n  

techniques.  I n  some cases, such as  chromatography, a c o n s i d e r a b l e  
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amount o f  p r a c t i c a l  and t h e o r e t i c a l  work has been done. I n  

o the rs ,  such as c a p i l l a r y  e l e c t r o k i n e t i c  separa t i ons ,  t h e  r e s e a r c h  

i s  j u s t  beg inn ing .  The " a d d i t i o n a l  phase" or "pseudophase" 

concept developed f o r  m i c e l l a r  systems can a l s o  b e  used f o r  a 

v a r i e t y  o f  o t h e r  techn iques  t h e r e b y  u n i t i n g  them th rough  a common 

t h e o r e t i c a l  approach. However, d e v i a t i o n s  from bas ic  t h e o r y  a r e  

known t o  occur  when one o r  more o f  t h e  necessary s i m p l i f y i n g  

assumptions a r e  n o t  Val i d .  T h e o r e t i c a l  1 i m i t a t i o n s  can a1 so 

r e s u l t  from our  incomplete and e v o l v i n g  knowledge o f  t h e  

p r o p e r t i e s  and s t r u c t u r e  o f  t h e  m i c e l l e .  The advantages and 

d isadvantages o f  m i c e l l e s  i n  separa t i ons  a r e  becoming c l e a r e r  w i t h  

t ime .  It i s  d o u b t f u l  t h a t  t hey  w i l l  ever  r e p l a c e  t r a d i t i o n a l  

t echn iques  on a l a r g e  scale.  However, m i c e l l e s  and c o n c e p t u a l l y  

r e l a t e d  m o d i f i e r s ,  w i l l  undoubtedly  p l a y  an i m p o r t a n t ,  more 

s p e c i a l i z e d  r o l e  i n  s e p a r a t i o n s  w h i c h  demand t h e  u n i q u e  

c h a r a c t e r i s t i c s  o f  t hese  systems. One p o i n t  t h a t  i s  r a r e l y  

considered i s  t h e  impact  t h i s  work can have o u t s i d e  t h e  f i e l d  o f  

separa t i ons .  Sc i e n  t i s t  s i n t e r e s t e d  i n  c o l  1 o i d  s , k i n e t  i c  s , 

c a t a l y s i s ,  emu1 s i o n  p o l y m e r i z a t i o n ,  t e r t i a r y  o i l  recovery,  enzyme 

o r  membrane m o d e l i n g ,  and so on, c a n  use many o f  t h e  

aforement ioned techniques t o  s tudy  and c h a r a c t e r i z e  t h e i r  systems. 

Indeed, t h i s  may b e  as i m p o r t a n t  as t h e  more p r a c t i c a l  aspects  o f  

m i c e l l e s  i n  separa t i ons .  
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